

HBT3000 系列

内阻测试仪

用户手册

2023.12

保证和声明

版权

本文档版权属青岛汉泰电子有限公司所有。

声明

青岛汉泰电子有限公司保留对此文件进行修改而不另行通知之权利。青岛汉泰电子有限公司承诺所提 供的信息正确可靠,但并不保证本文件绝无错误。请在使用本产品前,自行确定所使用的相关技术文 件规格为最新有效的版本。若因贵公司使用青岛汉泰电子有限公司的文件或产品,而需要第三方的产 品、专利或者著作等与其配合时,则应由贵公司负责取得第三方同意及授权。关于上述同意及授权,

非属本公司应为保证之责任。

产品认证

Hantek 认证 HBT3000 系列内阻测试仪满足中国国家行业标准和产业标准,并且已通过 CE 认证和 UKCA 认证。

联系我们

如果您在使用青岛汉泰电子有限公司的产品过程中,有任何疑问或不明之处,可通过以下方式取得服

务和支持:

电子邮箱: service@hantek.com, support@hantek.com

网址: http://www.hantek.com

目录

目录		I
插图清单…		VII
表格清单…		X
1 安全要	求	1
1.1	常规安全事项概要	1
1.2	安全术语和符号	2
1.3	测量类别	3
1.4	通风要求	3
1.5	工作环境	4
1.6	保养和清洁	5
1.7	环境注意事项	6
2 产品特	色	7
3 文档概	述	8
4 快速入	<u>ا</u> ``	10
4.1	一般性检查	10
4.2	外观尺寸	10
4.3	使用前准备	11

-

CN

4.3.1	连接电源	11
4.3.2	调整提手	11
4.3.3	设置系统语言	12
4.4	产品介绍	
4.4.1	前面板介绍	13
4.4.2	后面板介绍	14
4.4.3	用户界面介绍	14
4.5	设置参数数值	15
4.6	使用内置帮助系统	
5 开始修	吏用	16
5.1	测量设置	
5.1.1	设置类型	16
5.1.2	设置电压量程	17
5.1.3	设置电阻量程	17
5.1.4	设置采样速率	
5.2	调零	
5.3	测试异常输出	
6 应用测	则量	20
6.1	测量配置	
	用户手册	版权所有©青岛汉泰电子有限公司

_

6.1.1	设置采样速率	20
6.1.2	设置平均值	21
6.1.3	触发功能	21
6.1.4	延迟功能	22
6.1.5	绝对值功能	22
6.2	比较器功能	23
6.2.1	比较器功能设定	23
6.2.2	设置上下限和比例	24
6.2.3	比较器的页面显示	25
6.3	统计运算功能	26
6.3.1	统计功能的开关	26
6.3.2	统计结果	26
6.3.3	正态分布图	28
6.3.4	保存/调出	29
6.3.5	数据缓存	
6.3.6	数据清除	
6.4	系统设置	
6.5	校正	
6.6	通讯设置	
权所有©青岛	汉泰电子有限公司	

CN

6.6.1	LAN	32
6.6.2	串口	
6.7	其他设置	
6.7.1	系统时间	33
6.7.2	屏幕亮度	34
6.7.3	按键音	34
6.7.4	语言	34
6.7.5	升级	34
6.8	存储功能	
6.8.1	保存路径	34
6.8.2	内部/外部保存	34
6.8.3	开机设置	35
6.9	加载功能	35
6.9.1	加载路径	35
6.9.2	内部/外部加载	35
6.9.3	开机设置	35
6.10	调零	
6.11	Local 键	
6.12	TRIG 键	
HBT3000 系列》 IV	则用户手册 版权所有©青岛汉泰	电子有限公司

6.13	加/减键	
6.14	Range 键	
6.15	ESC 键	
6.16	P键	
7 外部控	韵(EXT I/O)	
7.1	输入端子功能	42
7.2	输出端子功能	42
8 模拟输	出	44
8.1	连接模拟输出	
9 远程控	制	46
9.1	USB 远程控制	
9.2	LAN 远程控制	
9.3	串口控制	
10 故障处	理	50
11 附录…		51
11.1	性能指标	51
11.2	附录 A:型号与附件	54
11.3	附录 B:交流四端子测试法	
11.4	附录 C:执行调零	57
版权所有©青岛	汉泰电子有限公司	HBT3000 系列用户手册

v

CN

.1 调零接线原理	.57
.2 利用夹型测试线调零	.58
.3 利用针型测试线调零	.58
附录 D:保修概要	.59

插图清单

冬	4.1 ፲	三视图10
图	4.2 俯	ī视图1 ⁻
图	4.3 i	调整提手
图	4.4 育	前面板13
冬	4.5 卮	与面板
图	4.6 F	月户界面14
图	4.7	牧字键盘1
图	5.1	则量显示界面16
图	5.2	则量电压界面17
图	5.3	则量电阻界面17
图	5.4	则量显示界面18
图	5.5 i)	周零界面18
图	5.6	则试异常19
冬	5.7	则量溢出19
冬	6.1	则量显示界面
冬	6.2 같	2023年林速率
图	6.3 i	设置平均值
冬	6.4 ਪ੍ਰੋ	设置触发源2 ⁻
冬	6.5 ថ្ង	段置延时22
冬	6.6 ថ្ង	22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-

-

CN

冬	6.7 设置比较器功能	23
冬	6.8 设置电阻上下限	24
冬	6.9 数字键盘	25
冬	6.10 页面显示	25
冬	6.11 统计运算功能	26
冬	6.12 统计运算功能	26
冬	6.13 统计指标	27
冬	6.14 统计列表	28
冬	6.15 统计列表	28
冬	6.16 正态分布图	29
冬	6.17 正态分布图	29
冬	6.18 设置数据缓存	30
冬	6.19 系统设置界面	31
冬	6.21 电压校准	32
冬	6.22 LAN 参数设置	32
冬	6.23 设置系统时间	33
冬	7.1 EXT I/O 连接器	
冬	8.1 连接图	45
冬	9.1 设置 LAN 参数	46
冬	9.2 设置计算机以太网属性	47
冬	9.3 手动添加设备	47
冬	9.4 网口图标显示	48

冬	9.5 R	S232/485 连接器	18
图	11.1	交流四端子测量法原理图5	56
图	11.2	原理图5	57
图	11.3	夹型测试线调零5	58
冬	11.4	针型测试线调零5	58

CN

表格清单

表 3.1 按钮	9
表 3.2 型号表格	9
表 6.1 出厂默认值	38
表 7.1 EXT I/O 输出端子	42
表 8.1 模拟输出规格	44
表 9.1 RS232/485 连接器针编号	49
表 11.1 精度保证条件	51
表 11.2 精度	52
表 11.3 常规特性	52
表 11.4 其他功能	54
表 11.5 内阻测试仪型号	54
表 11.6 标配附件	55

1 <u>安全要求</u>

1.1 常规安全事项概要

仔细阅读下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何 产品。为避免可能的危险,请务必按照规定使用本产品。

● 只有专业授权人员才能执行维修。

• 使用正确的电源线。

只使用所在国家认可的本产品专用电源线。

● 将产品接地。

为避免电击,本产品通过电源线的接地导体接地,接地导体必须与地相连在连接本产品的输入或输出端前,请务必将本产品正确接地。

查看所有终端额定值。

为避免起火或过大电流的冲击,请查看产品上所有的额定值和标记说明。请在连接产品 前查阅产品手册以了解额定值的详细信息。

● 请勿开盖操作。

外盖或面板打开时请勿运行本产品。

● 避免电路外露。

电源接通后请勿接触外露的接头和元件。

● 怀疑产品出现故障时,请勿进行操作。

如果您怀疑此产品已被损坏,请断开电源线,并让合格的维修人员进行检查。

● 保持适当的通风。

- 请勿在潮湿环境下操作。
- 请勿在易燃易爆的环境下操作。
- 请保持产品表面的清洁和干燥。

警告:

符合 A 类要求的设备可能无法对居住环境中的广播服务提供足够的保护。

1.2 <u>安全术语和符号</u>

本手册中的安全术语:

危险:

表示您如果进行此操作可能会立即对您造成损害。

警告:

表示您如果进行此操作可能不会立即对您造成损害。

注意:

表示您如果进行此操作可能会对本产品或其它财产造成损害。

产品上的安全术语:

警告:

表示您如果不进行此操作,可能会对您造成潜在的危害。

产品上的安全符号:

警告

壳体接地端

环保使用期限标识

1.3 测量类别

测量类别

本仪器可在测量类别丨下进行测量。

警告:

本仪器仅允许在指定的测量类别中使用。

测量类别定义

- 测量类别 | 是指在没有直接连接到主电源的电路上进行测量。例如,对不是从主电源导出的电路,特别是受保护(内部)的主电源导出的电路进行测量。在后一种情况下,瞬间应力会发生变化。因此,用户应了解设备的瞬间承受能力。
- 测量类别 II 是指在直接连接到低压设备的电路上进行测量。例如,对家用电器、便携式工具和类似的设备进行测量。
- 测量类别 III 是指在建筑设备中进行测量。例如,在固定设备中的配电板、断路器、线路(包括电缆、母线、接线盒、开关、插座)以及工业用途的设备和某些其它设备(例如,永久连接到固定装置的固定电机)上进行测量。
- 测量类别 IV 是指在低压设备的源上进行测量。例如,电表、在主要过电保护设备上的测量以及在脉冲控制单元上的测量。

1.4 通风要求

为保证充分的通风,在工作台或机架中使用仪器时,请确保其两侧、上方、后面应留出至少10厘米的间隙。

注意:

通风不良会引起仪器温度升高,进而引起仪器损坏。使用时应保持良好的通风,定期检 查通风口。

1.5 工作环境

操作温、湿度范围

0℃ - 40℃、80%RH 以下(没有结露)

存储温、湿度范围

-10℃ - 50℃、80%RH 以下(没有结露)

精度保证温、湿度范围

23℃±5℃、80%RH以下(没有结露)

警告:

为避免仪器内部电路短路或发生电击的危险,请勿在潮湿环境下操作仪器。

海拔高度

操作时和不操作时: 2,000m。

安装 (过电压) 类别本产品由符合安装 (过电压) 类别 II 的主电源供电。

警告:

确保没有过电压(如由雷电造成的电压)到达该产品。否则操作人员可能有遭受电击的危

险。

安装 (过电压) 类别定义

安装(过电压)类别 | 是指信号电平,其适用于连接到源电路中的设备测量端子,其中 已经采取措施,把瞬时电压限定在相应的低水平。

安装(过电压)类别 || 是指本地配电电平,其适用于连接到市电(交流电源)的设备。

4

_

污染程度

2 类

污染程度定义

- 污染度 1: 无污染,或仅发生干燥的非传导性污染。此污染级别没有影响。例如:
 清洁的房间或有空调控制的办公环境。
- 污染度 2:一般只发生干燥的非传导性污染。有时可能发生由于冷凝而造成的暂时
 性传导。例如:一般室内环境。
- 污染度 3:发生传导性污染,或干燥的非传导性污染由于冷凝而变为具有传导性。
 例如:有遮棚的室外环境。
- **污染度 4:**通过传导性的尘埃、雨水或雪产生永久的可导性污染。例如:户外场 所。

安全级别

1级-接地产品

1.6 保养和清洁

保养:

存放或放置内阻测试仪时,请勿使液晶显示器长时间受阳光直射。

清洁:

按照操作条件的要求,经常检查内阻测试仪和测试线,请按照下述步骤清洁仪器的外表 面:

1) 使用不起毛的抹布清除内阻测试仪和测试线外部的浮尘。请千万小心以避免刮擦到光

洁的显示器滤光材料。

 2)使用一块用水浸湿的软布清洁内阻测试仪。要更彻底地清洁,可使用 75%异丙醇的 水溶剂。

注意:

为避免损坏内阻测试仪或测试线的表面,请勿使用任何腐蚀性试剂或化学清洁试剂。

警告:

重新通电之前,请确认仪器已经干透,避免因水分造成电气短路甚至人身伤害。

1.7 环境注意事项

以下符号表明本产品符合 WEEE Directive 2002/96/EC 所制定的要求。

设备回收:

生产该设备需要提取和使用自然资源。如果对本产品的报废处理不当,则该设备中包含的某些物质可能会对环境或人体健康有害。为避免将有害物质释放到环境中,并减少对自然资源的使用,建议采用适当的方法回收本产品,以确保大部分材料可正确地重复使用。

2 <u>产品特色</u>

产品特点

- 全系列电压测量量程涵盖: 110 V/210 V/360V/1100V/1600V/2000V
- 内部阻抗测量量程: 3 mΩ/30 mΩ/300 mΩ/3 Ω/30 Ω/300 Ω/3.6 kΩ
- 采用交流4端子法,阻抗测量时能够不受测试线的阻抗影响
- 电阻最小分辨率 0.1μΩ, 电压最小分辨率 1μV
- 拥有电阻和电压分别独立的比较功能,同时显示电池内阻和电压
- 短路清零功能,去除仪器的偏置电压或测量环境产生的误差
- 支持 U 盘数据存储和截图保存功能,可通过 U 盘升级仪器程序
- 计算各种统计指标,包括但不限于平均值、最大值、最小值、标准偏差等,轻松绘制 正态分布图
- 标配 RS232/485, LAN, EXT I/O, USB Host, ANALOG OUTPUT, USB Device 接口
- 采样速率: 慢速/中速/快速, 最快可进行约为 40 ms 的高速测量。
- 电压校准和电阻校准,用于补偿仪器内部电路的偏置电压或者增益漂移

HBT3000系列内阻测试仪是一款具备高精度、高分辨率、快速测量特性的电池内阻测试 仪。采用交流四端子测试法,更精准地测试电池内阻和电压;0.1μΩ电阻分辨率,电压 最小分辨率1μV,保证测量的可信度;内建比较器功能,自动判断电池参数是否符合标 准;内置多种高速通信接口,适用于更多测试场景;操作简单,精准快速,稳定可靠, 本款电池内阻测试仪会是您的不二选择。

版权所有©青岛汉泰电子有限公司

3 <u>文档概述</u>

本文档用于指导用户快速了解 HBT3000 系列内阻测试仪的前后面板、用户界面及基本操作方法等。

提示:

本手册的最新版本可登陆 (http://www.hantek.com) 进行下载。

文档编号: 202312

软件版本:

软件升级可能更改或增加产品功能,请关注 Hantek 网站获取最新版本。

文档格式约定:

1 按键

用"方括号+文字(加粗)"表示前面板按键,如 [Utility]表示"Utility"按键。

2 菜单

用"菜单文字(加粗)+蓝色"表示一个菜单选项,如 其他表示点击仪器当前操作界面上的"其他"选项,进入"其他"的功能配置菜单。

3 操作步骤

用连字符和箭头"->"表示下一步操作,如 [Utility]-> 通讯设置表示点击 [Utility] 后,再点击通讯设置功能键。

4 按钮

标识	按钮	标识	按钮
	方向键		截图键

表 3.1 按钮

文档内容约定:

HBT3000 系列内阻测试仪包含以下型号。如无特殊说明,本手册以 HBT3563A 为例说 明 HBT3000 系列及其基本操作。

型号	电阻分辨率	电压分辨率	测量范围	接口
HBT3561A	0.1μΩ	1µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~110V	IO,ANALOG OUTPUT
HBT3562A	0.1μΩ	1µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~210V	IO,ANALOG OUTPUT
HBT3563A	0.1μΩ	1µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~360V	IO,ANALOG OUTPUT
HBT3564A	0.1μΩ	10µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~1100V	IO,ANALOG OUTPUT
HBT3565A	0.1μΩ	10µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~1600V	IO,ANALOG OUTPUT
HBT3566A	0.1μΩ	10µV	0~3.6kΩ/	RS232/485,USB,LAN,
			0~2000V	IO,ANALOG OUTPUT

表 3.2 型号表格

4 快速入门

4.1 一般性检查

检查运输包装

用户收到内阻测试仪后请按照下列步骤检查设备:检查是否有因运输造成的损坏:如果 发现包装纸箱或泡沫塑料保护垫严重破损,请先保留,直到整机和附件通过电性和机械 性测试。

检查附件

关于提供的附件明细, 在本说明书后面的"附录 A: 型号与附件"中进行了说明。如果发现附件缺少或损坏, 请和负责此业务的经销商联系。

检查整机

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和负责此业务的经销商联系。

4.2 <u>外观尺寸</u>

图 4.1 正视图

图 4.2 俯视图

4.3 使用前准备

4.3.1 连接电源

本系列内阻测试仪可输入交流电源的规格为:90~240 VAC,47/63Hz 30VA。请使用附件提供的电源线将内阻测试仪连接到电源中。按下前面板左下角的电源开关,打开仪器。如果仪器没有打开,请确认电源线是否牢固连接,同时确保仪器连接到通电的电源。

警告:

为避免电击,请确保仪器正确接地。

4.3.2 调整提手

要调整仪器的提手,请握住仪器两侧的提手并向外拉,然后旋转提手。

快速入门

图 4.3 调整提手

4.3.3 设置系统语言

该内阻测试仪支持中英文菜单,并提供相应的帮助信息、提示信息和界面显示。 按下 [Utility] -> Other -> English 选择需要的语言。当选择"中文"或"English" 时,菜单、帮助信息、提示消息和界面分别以中文或英文显示。

4.4 产品介绍

本章介绍内阻测试仪的前、后面板和用户界面。

4.4.1 前面板介绍

图 4.4 前面板

1 开关键

2 菜单软键

与其上方菜单一一对应,按下任一软键激活对应的菜单。

3 方向键 (上/下/左/右键)、确认键

方向键:用于选择键盘数字或者参数的修改;确认键:确认选中的参数。

- 4 加键、量程键、减键
- 5 输入端口
- 6 功能键
- [COMP]:比较器功能菜单。
- [STAT]: 统计功能菜单。
- [Local]:键盘上锁/解锁;本地远程控制键。
- [MEA]:测量功能菜单。
- [VIEW]:系统信息菜单。
- [0 ADJ]:调零键。
- [SAVE]:保存键。
- [LOAD]:调出键。
- [ESC]:退出键。
- [Utility]: 辅助功能键。
- [TRIG]: 触发键。

7 LCD 显示屏

4.3 寸彩色 TFT 液晶显示屏,显示当前功能的菜单和参数设置、系统状态以及提示消息 等内容。

8 恢复默认设置

用于将仪器状态恢复到出厂默认值。

9 帮助

要获得任何前面板按键或菜单软键的上下文帮助信息,按下该键后,再按下您需要获得其

帮助信息的按键。

```
10 USB HOST 接口
```

可接入外部存储设备 (U 盘), 用于保存或加载设置文件等。

4.4.2 后面板介绍

图 4.5 后面板

- 1 AC 电源插口
- 2 売体接地端
- 3 保险丝座
- 4 安全锁孔
- 5 USB DEVICE 接口
- 6 LAN 接口
- 7 EXT I/O 接口
- 8 ANALOG OUTPUT 接口
- 9 RS-232/485 接口

4.4.3 <u>用户界面介绍</u>

图 4.6 用户界面

- 1 量程快捷标识
- 2 触发源
- 3 采样速率
- 4 延时
- 5 U 盘图标显示
- 6 USB 设备图标显示
- 7 网络图标显示
- 8 锁屏图标
- 9 Local/Remote 显示
- 10 电压测量值
- 11 电阻测量值
- 12 辅助菜单栏
- 13 电阻量程
- 14 电压量程

4.5 设置参数数值

本系列内阻测试仪的参数设置支持数字键盘输入。参数设置可通过左键、右键和确认键完成。通过点击左键和右键移动光标的位置,点击确认键[OK]进行输入。将光标定位到 enter 22键,再点击[OK],即可保存并退出。

			3	0		
0 1	2 3	3 4	56	78	9.	N S S

图 4.7 数字键盘

注意: 在数字键盘界面超过 30 秒未进行设置, 仪器自动跳转到测量显示界面。

4.6 使用内置帮助系统

要获得任何前面板按键或菜单软键的帮助信息,在测量显示界面,按下前面板的 [?] 按键,然后再按下你所需要获得帮助的按键,就可获取该按键的操作提示。再次按下 [?] 按键即可退出帮助系统。

5 <u>开始使用</u>

- 为了防止发生触电事故,请勿将测试线顶端和有电压的线路发生短路。
- 请勿测量交流电压、交流电流以及直流电流。否则,可能会造成仪器损坏或人身伤害 事故。
- 为了防止触电,测量之前请确认测试线的额定值,不要测量高于额定值的电压。

5.1 测量设置

点击按键[Range],进入测量显示界面。

图 5.1 测量显示界面

注意:在其他界面(除校准界面)超过 30 秒未进行设置,仪器自动跳转到测量显示界面。

5.1.1 设置类型

点击**类别**菜单软键,可选择的类别有电压&电阻、电压和电阻。 电压&电阻:同时测量和显示电压和电阻,如图 5-1。 电压:测量和显示电压值,如下图所示。

_____ HBT3000 系列用户手册

16

版权所有©青岛汉泰电子有限公司

图 5.2 测量电压界面

电阻:	测量	和显示明	电阻值,如	下图所示	o		
		Ω	内部触发	慢速	1ms		🔒 Local
		量程 自动 3mΩ		0	.00(02	mΩ
	Ŷ	类型 电阻	量程(V ↓ 自动	/) 量程 ↓ 自i	(R) 动		

图 5.3 测量电阻界面

注意:只测量电阻或电压时,如果将测量类型设定为电阻功能或电压功能,则可进行更高速的测量。

5.1.2 设置电压量程

本仪器(HBT3563H)可选择的电压量程有 6V、60V、360V、自动。其中自动是指仪器将自动选择合适的电压量程。

- 1 按[Range]键进入测量页面;
- 2 点击量程(V)菜单软键;
- 3 使用菜单软键选择量程,即可完成设置电压量程。

此外,可以使用加减键切换量程,使用加减键切换量程时,无法选择自动。

注意: 自动量程可能会因被测物测量值处于量程临界值而变得不稳定。此时,请以手动方 式指定量程或延长延迟时间。

如果在自动量程状态下按下加减键,则在当前量程下解除自动量程,变为手动量程,屏幕 上显示的自动变为固定。

5.1.3 设置电阻量程

本系列内阻测试仪可选择的电阻量程有 $3m\Omega$ 、30 m Ω 、300 m Ω 、3 Ω 、30 Ω 、300 Ω 、3600 Ω 、自动。其中自动是指仪器将自动选择合适的电阻量程。

- 1 按[Range]键进入测量页面;
- 2 点击量程(R)菜单软键;
- 3 使用菜单软键选择量程,即可完成设置电阻量程。

此外,可以使用加减键切换量程,使用加减键切换量程时,无法选择自动。

注意:自动量程可能会因被测物测量值处于量程临界值而变得不稳定。此时,请以手动方 式指定量程或延长延迟时间。 如果在自动量程状态下按下加减键,则在当前量程下解除自动量程,变为手动量程,屏幕 上显示的自动变为固定。

5.1.4 设置采样速率

点击按键[**MEA]**,进入到测量显示界面,如下图所示。再点击**采样速率**,可选择的档位 有:慢速、中速和快速。使用菜单软键选择需要的速率档位,即可完成采样速率设置。

图 5.4 测量显示界面

5.2 调零

HBT3000 系列用户手册

18

为了除去因仪器本身偏置电压或测量环境而产生的误差,请在测量之前执行调零。测量精度在调零之后进行规定。也可以在 EXT I/O 的 0ADJ 端子上执行调零。 点击[0 ADJ]键,或依次点击[Utility]->校准,输入密码后,点击调零软键,执行调零, 调零成功后,界面会弹出调零成功,如下图所示。如果调零失败,请检查短接是否正确,

图 5.5 调零界面

5.3 测试异常输出

 测试线未连接到测试物上时,画面上显示[-----],如下图所示。另外,会从 EXTI/0 端子输出测试异常信号(ERR)。

图 5.6 测试异常

● 测试物的电阻大于量程时,画面上显示[OverLoad],如下图所示。另外,会从 EXTI/0 端子输出测试异常信号(ERR)。

	Ω	内部触发	慢速	1ms		9	Local
	量程 固定 30mΩ		O١	/erl	₋oad	n	าΩ
۰.	类型 电阻	量程(\ ↓ 6V	/) 量 ↓ 3	程(R) 0mΩ			

图 5.7 测量溢出

- 此外,下述情况也会造成测试异常。
- 探头断线时
- 因探头磨损、脏污等而导致接触电阻较大时或配线电阻较大时
- 回路保护保险丝断线时
- 注意:如果接触电阻或配线电阻较大,测量值的误差则会增大。

6 应用测量

6.1 测量配置

测量页面有 5 个测试配置:[采样速率]、[平均值]、[触发源]、[绝对值]和[延时]。下面分别 介绍这些测量配置的功能与设定方法。

6.1.1 设置采样速率

可按3个阶段(慢速/中速/快速)变更采样速率。采样速率越低,测试精度越高。 切换采样速率步骤:

点击按键中的[MEA],显示如下:

图 6.1 测量显示界面

点击采样速率,显示如下。再按下相应软键,即可完成设置采样速率。

图 6.2 设置采样速率

6.1.2 设置平均值

平均值功能是指输出平均测量值的功能。使用该功能,可缩小显示值的偏差。依次点击 [MEA]->平均值,即可设置平均值。可选择的平均次数有1、2、4和8,如图所示。默 认设置为1。再按下相应软键,即可完成设置平均值。

图 6.3 设置平均值

6.1.3 触发功能

触发源功能用来设置仪器的触发模式。触发源包括[内部触发]、[外部触发]和[手动触发]。 内部触发:在内部自动发生触发(自动测量)。

外部触发:通过外部输入触发信号进行测量。设置为外部触发,将后面板 EXT I/O 连接器的 TRIG 端子与 ISO COM 短路,进行 1 次测量。

手动触发:通过手动输入触发信号进行测量。设置为手动触发,按下 TRIG 键,进行 1 次测量。

依次点击[**MEA]->触发源**,即可设置触发源,如图所示。再按下相应软键,即可完成设置触发源。默认设置为内部触发。

图 6.4 设置触发源

6.1.4 延迟功能

设定从输入触发信号至开始测量之间的延迟时间。若在连接测试物之后立即输入触发信号,通过设置延迟时间,仪器在测量值稳定之后开始测量。可设置的延迟范围为 1ms~9999ms,默认为1ms。

依次点击[MEA]->延时(ms),即可设置延时时间,如图所示。通过左键和右键来移动光标位置,点击[OK]进行输入。将光标定位到 → 键,再点击[OK],即可保存并退出。

图 6.5 设置延时

6.1.5 绝对值功能

绝对值判定包含[开启]、[关闭],绝对值判定默认[开启]。开启该功能后即使电池极性反接,也可以显示为正值;如果关闭该功能,测量值有可能出现负值,影响比较结果判断。 依次点击[MEA]->绝对值,即可设置绝对值,如图所示。再按下相应软键,即可完成设置 绝对值功能。

图 6.6 设置绝对值功能

6.2 比较器功能

比较器功能是指比较事先设定的临界值与测量值,判断测量值是否符合判定基准并进行显 示和输出的功能。阈值的比较方法包括设置上、下限值的方法和设置基准值与百分比两种 方法。作为比较器结果,除了可进行 Hi、In、Lo 的页面显示和蜂鸣器鸣响之外,还可通 过 EXT I/O 端子输出。

比较模式有自动和手动两种,默认为自动模式。

自动模式:设置为自动模式并开启比较器功能后,始终输出比较器的比较结果。 手动模式:设置为手动模式并开启比较器功能后,只有在 EXT I/O 的 MANU 输入为 on 时才输出比较结果。

注意:比较器为开启时,不能使用自动量程。

D.II. -----

6.2.1 比较器功能设定

点击[Com	ìp] 按键,	跳转到比较翻	器设置页面	面, 如图所示。		
	V	内部触发 慢	速 1	ms 🛛 🗖	~ #	🔒 Local
	开关	关闭	电阻	上下限	电压	上下限
	模式	自动	上限	0.0003 kΩ	上限	0.0600 V
	蜂鸣器	关闭	下限	0.0003 kΩ	下限	0.0600 V
	开关 ✔ 关闭	比较模式 ↓ 自动	蜂鸣器 ↓ 关闭	↓ ^{电阻}	↓ 电压	

图 6.7 设置比较器功能

进入比较器界面后,修改相应设置有以下两种方法:

方法一:使用方向键的上/下键移动白框到对应的设置,确认要修改的设置后,点击方向 键的左/右键修改对应的参数。

方法二: 点击菜单软键进行设置。

1. 开关

按下该软键,选择打开或关闭比较器功能。

2. 比较模式

按下该软键,选择自动或手动模式。

3. 蜂鸣器

按下该软键,设置蜂鸣器鸣响。可选择的类型有关闭、HL、IN、BT1和BT2。 关闭:蜂鸣器为关闭状态。

HL: 当比较结果为 Hi 或 Lo 时, 蜂鸣器发出"滴滴滴..."音。

In: 当电压和电阻的比较结果为 In 时, 蜂鸣器发出"滴滴"音(连续音)。

BT1:当比较结果为 In 时,蜂鸣器发出"滴滴"音(连续音),Hi 和 Lo 时蜂鸣器发出 "嘀嘀嘀..."音。
BT2:从 Hi 和 Lo 状态变为 In 时,蜂鸣器只发出一次"滴"(短音),Hi 和 Lo 时蜂鸣器发出 "滴滴滴..."音。

4. 电阻

按下该软键,设置电阻的上下限和比例。 选择上下限,设置上限值(mΩ)和下限值(mΩ)。 选择比例,设置基准值(mΩ)和比例(%)。

5. 电压

按下该软键,设置电压的上下限和比例。 选择上下限,设置上限值(V)和下限值(V)。 选择比例,设置基准值(V)和比例(%)。

注意:在比较器界面超过 30 秒未进行指令设置,仪器将自动跳转到测量显示界面。
 比较器功能打开后,无法修改比较器界面参数。
 比较器功能打开后,影响测量的操作将会被禁止。被禁止的操作包括以下:
 MEA 界面的所有设置项无效,点击 SAVE、LOAD、0ADJ 按键无效。

6.2.2 设置上下限和比例

在比较器页面点击**电阻**,可设置电阻比较器参数;在比较器页面点击**电压**,可设置电压 比较器参数。参数设置有上下限和比例两种模式,默认为上下限模式。

Ω	内部触发 慢	速 1	ms 🛛 🔳		🔒 Local
开关	关闭	电阻	上下限	电压	上下限
模式	自动	上限	0.0003 kΩ	上限	0.0600 V
蜂鸣器	关闭	下限	0.0003 kΩ	下限	0.0600 V
电阻 ↓ 上下限	上限值(kΩ) 厚0.0003	下限值(k 興0.0003	Ω) 3		▲ 返回

图 6.8 设置电阻上下限

选择上下限,可以设置上限值和下限值。 选择比例,可以设置基准值和比例。 设置上/下限值、基准值和比例的步骤相同,以设置基准值为例进行说明。 在电阻比例界面,点击**基准值 (mΩ)**,弹出数字键盘,如下图所示。

图 6.9 数字键盘

通过点击左键和右键移动光标的位置,点击确认键[OK]进行输入。将光标定位到 enter 🔁 键,再点击[OK],即可保存并退出。

键盘标题处的括号所包含的内容为仪器当前的测量挡位,如上图所处的测量挡位为 300m Ω 档。使用键盘设置的数值也是以 m Ω 为单位,如在键盘上输入 15,代表设置的电阻基准 值为 15mΩ。

注意:设置的比较值会随着仪器的测量挡位的切换而变化。例如:当前挡位为 3.9kΩ挡, 设置比较器的上限值为 3kΩ, 切换为 300Ω挡时, 比较器的上限值会自动更改为 300Ω。

比较器的页面显示 6.2.3

比较器开启后,仪器将会根据设置的上下限值或比例与测量值进行比较,并在页面显示比 较结果 Hi、In、Lo。如图所示。

- Hi:测量值超出上下限或比例范围。
- In:测量值在上下限或比例范围内。
- Lo:测量值低于上下限或比例范围。

6.3 统计运算功能

点击[**STAT**]按键,进入到统计运算功能界面,如图所示。下面分别介绍统计功能开关、统计结果、正态分布图、保存/调出、数据缓存和清除数据功能。

图 6.11 统计运算功能

6.3.1 <u>统计功能的开关</u>

依次点击[**STAT**]->**开关**,即可设置统计功能的开关。按下相应软键,即可打开或关闭统 计功能。打开统计功能后,屏幕上会实时显示当前计数。

关闭统计功能后,若不进行数据清除,再次打开统计功能,仪器将在原有计数的基础上进 行累加。

图 6.12 统计运算功能

6.3.2 统计结果

统计结果查看方式分为[统计指标]和[统计列表]。

依次点击[**STAT]->统计结果->统计指标**,统计指标显示如下:

指标		电阻	E	电压
平均值		02.998	Ω (000.004mV
最大值		02.998	Ω -	-00.016mV
最小值		02.998	Ω	000.000mV
母标准偏差		00.014	mΩ (000.003mV
采样标准偏差	00.014	mΩ (000.003mV	
工序能力指数(偏移)	7.2459	5 (D
工序能力指数(偏差)	0	(0
开关 ↓ 开启 ↓ ^{统计结果}	正态分布图	↓保存/调出	数据缓7 💷 1000	^字 清除数据

图 6.13 统计指标

针对最多 1000 个测量数据, 计算并显示平均值、最大值、最小值、母标准偏差、采样标 准偏差以及工序能力指数。运算公式如下所示:

平均值

母标准偏差

采样的标准偏差

工序能力指数 (偏差)

工序能力指数 (偏移)

- Hi、Lo 使用比较器的上、下限值。
- 工序能力指数是指工序质量的实现能力,可理解为工序具有的质量偏差和偏移的幅度。
 一般可使用 Cp、Cpk 的值来评价工序能力 (如下所示):

Cp、CpK>1.33.....工序能力充分

- 1.33≥ Cp、CpK>1.00工序能力适当
- 1.00ZCp、CpK工序能力不足

注意:

- 有效数据数(测试异常除外)为1个时,不显示采样标准偏差和工序能力指数。
- σ_{n-1} 为0 时, Cp、CpK 为 99.99。
- Cp、CpK 的上限为 99.99。Cp、CpK>99.99 时,显示为 99.99。
- CpK 为负数时, CpK=0。
 依次点击[STAT]->统计结果->统计列表, 统计列表显示如下:

应用测量

编号	电阻	月	1压	比较纬	5.果
1	010.95380	2 000.00	00258V	PAS	S
2	010.95380	2 000.00	00256V	PAS	S
3	010.95320	2 000.00	00255V	PAS	S
4	010.95450	2 000.00	00257V	PAS	S
5	010.95380	2 000.00	00258V	PAS	S
6	010.95320	2 000.00	00255V	PAS	S
7	010.95320	2 000.00	00259V	PAS	S
开关 开启	↓ ^{统计结果}	正态分布图	↓保存/调出	数据缓存 📟 1000	清除数据

图 6.14 统计列表

绯	副号	电阻	Ę	国压	比较结	課
	1				UNPA	SS
	2				UNPA	SS
	3				UNPA	SS
	4				UNPA	SS
8	5				UNPA	SS
	6				UNPA	SS
	7				UNPA	SS
L.	开关 关闭	,统计结果	正态分布图	_保存/调出	数据缓存	清除数据

图 6.15 统计列表

根据比较器功能中设置的电压、电阻的最大最小值与统计数据进行比较,若统计数据在 比较范围内,则对应的电压或电阻显示为白色;若不在比较范围内,则对应的电压或电 阻显示为红色;若电压、电阻值均在比较范围内,比较结果显示 PASS;反之显示 UNPASS。判定结果 PASS、UNPASS(电阻和电压各自的 Hi、In、Lo)可以输出到 EXT I/O 中。

6.3.3 正态分布图

HBT3000系列内阻测试仪可将统计的电阻和电压测量数据生成正态分布图。在统计主界面,点击**正态分布图**进入正态分布图界面。X表示波形显示倍数。 仪器有统计数据时显示如下:

图 6.16 正态分布图

图 6.17 正态分布图

6.3.4 保存/调出

用户可以将统计数据以.csv 的文件形式存储到外部 U 盘。

保存数据设置步骤:

- 首先关闭统计功能,将U盘插入到仪器前面板 USB 口。连接成功后,屏幕上弹出 1 "USB设备已连接"。
- 2 在统计运算界面,依次点击保存/调出->保存数据,屏幕上弹出"文件保存成功", 仪器自动生成文件名,并保存到 U 盘中。文件根据当前系统时间进行命名。

调出数据设置步骤:

- 首先关闭统计功能,将U盘插入到仪器前面板 USB 口。连接成功后,屏幕上弹出 1 "USB 设备已连接"。
- 在统计运算界面, 依次点击保存/调出->加载数据, 使用上/下键移动光标选择文件, 2 点击[OK]调出文件,屏幕上弹出"文件加载成功"。
- 3 依次点击统计结果->统计列表,即可查看当前调出的文件数据。

6.3.5 数据缓存

HBT3000 系列内阻测试仪最多可记录 1000 组统计数据,通过数据缓存功能,可设置数据 缓存区的大小,即设置每次统计记录数值的个数。例如,将数据缓存设置为 10,仪器记 录的数值到达 10 时,仪器自动停止记录。

图 6.18 设置数据缓存

依次点击[STAT]->数据存储,点击左键和右键来移动光标位置,点击[OK]进行输入。将 光标定位到 ♀ 键,再点击[OK],即可保存并退出。

6.3.6 数据清除

依次点击[**STAT**]->**清除数据**,点击[**OK**]确认清除,点击[**ESC**]取消清除。若统计功能未关闭,点击清除数据,仪器将清除当前计数并自动进行下次统计。

6.4 系统设置

点击[Utility]进入系统设置界面。系统设置中包括系统信息、校准、通讯设置和其他。 依次点击[Utility]->**系统信息,**可以查看设备的信息(如型号、序列号、软件版本和硬件 版本等)。此外,也可以通过点击[VIEW]查看系统信息。系统信息菜单弹出后,在该界面 超过 30 秒未进行操作,系统信息自动关闭。

图 6.19 系统设置界面

6.5 校正

依次点击[Utility]->校准,输入密码后,可设置调零、电压校准、电阻校准。

警告:

禁止随意执行校准操作,防止影响测量精度。

具体步骤如下:

点击校准, 弹出密码的数字键盘。

输入正确密码后,进入到校准子菜单;若密码错误,界面弹出提示消息"密码错误"。

调零

详情参考 <u>附录 C: 执行调零</u>。

电压校准设置步骤

1 将直流电源连接到内阻测试仪输入端口,设置电源输出

2 输入实际电压

依次点击**电压校准->实际电压**,这时页面显示电压校准(正),使用左/右键移动光标的 位置,点击[OK]输入实际电压值,将光标定位到 ↓ 键,再点击[OK],即可保存该数 值。

۷	内部触发	慢速	1ms	- # +~ +	-	Local
		E	电压校准(正)	- 10	
	校准档	位:			6V	
	实际电	压:			V	
实际电) IIII	^ਛ ጉ一	ŕ			^	返回

图 6.20 电压校准

3 设置下一个档位

点击下一个,校正下一个档位。重复步骤1和2。

当页面显示电压校准(负)时,应将红黑表笔反接,并继续校准。所有档位校准完毕 后,右下角的返回菜单切换为完成,点击**完成**,即电压校准完毕。

电阻校准设置步骤

- 1 将四线电阻连接到内阻测试仪输入端口
- 2 输入实际电阻值

依次点击**电阻校准->实际电阻**,这时页面显示电阻校准,使用左/右键移动光标的位置, 点击[OK]输入实际电阻值,将光标定位到 建,再点击[OK],即可保存该数值。

3 设置下一个档位

点击**下一个**,校正下一个档位。重复步骤 1 和 2。所有档位校准完毕后,右下角的返回 菜单切换为完成,点击**完成**,即电阻校准完毕。

注意:

校准之前,请将机器预热 30min。

校准之前,请确认仪器和测试线的额定值,否则,可能会造成仪器损坏或人身伤害事故。

6.6 通讯设置

通讯设置包括: LAN、串口

6.6.1 LAN

依次点击[**Utility**]->**通讯设置**->LAN,进入到 LAN 设置菜单。 LAN 参数设置包括:IP 模式、IP 地址、子网掩码和网关。

Ω	内部触发	慢速	1ms			🔒 Lo	cal
	IP模式		手声	边	DHC	CP	
	IP地址		192	1 <mark>68</mark>	001	127	
	子网掩码		255	255	255	000	
	网关		000	000	000	000	
		确认		取消			
LAN	↓ 串口					↑ 返	

图 6.21 LAN 参数设置

通过左/右键切换输入框,点击[OK]选中该输入框,点击上/下键修改数值,点击左/右键 移动光标的位置,再次点击[OK]退出当前输入框。LAN参数设置完成后,通过方向键将 光标定位到确认,点击[OK],即可保存并退出。 注意:在LAN参数设置界面,超过30秒未进行操作,仪器自动关闭LAN参数设置界面。

6.6.2 串口

依次点击[Utility]->通讯设置->串口,进入到串口设置菜单。 串口参数设置包括:波特率、数据位、校验位和停止位。 设置波特率,点击相应软键选择合适的波特率。 设置数据位,点击相应软键选择合适的数据位。 设置校验位,可选择无校验、奇校验和偶校验。 设置停止位,点击相应软键选择所需的停止位。

6.7 其他设置

其他设置包括:系统时间、屏幕亮度、按键音、语言和升级。

6.7.1 系统时间

依次点击[Utility]->其他->系统时间,进入到时钟设置界面。

通过左/右键切换输入框,点击[OK]选中该输入框,点击上/下键修改数值,点击左/右键 移动光标的位置,再次点击[OK]保存并退出当前输入框。点击[ESC]退出系统时间设置。 系统时间主要用于仪器保存文件、截图时的命名。

图 6.22 设置系统时间

注意: 在设置系统时间界面超过 30 秒未进行操作, 仪器将自动关闭设置系统时间界面。

6.7.2 屏幕亮度

依次点击[**Utility**]->**其他->屏幕亮度**,进入到屏幕亮度设置界面。点击左/右键减少或增加屏幕亮度,步进为 5。可调范围为 10-100。默认值为 50。

6.7.3 按键音

依次点击[Utility]->其他->按键音,打开或关闭按键音。

6.7.4 语言

依次点击[Utility]->其他->语言,切换为中文或英文。

6.7.5 升级

将固件拷贝到 U 盘,将 U 盘插入到仪器前面板的 USB 口。依次点击[**Utility**]->**其他**-> **升级**,屏幕上弹出"是否进行系统升级?"。将光标定位到确认并点击[**OK**],即完成升级 设置。当进度条进行到 100%,仪器会自动重启,至此应用程序升级完成。

6.8 存储功能

存储功能可以存储仪器下次上电时使用的配置到本机内部存储器或 U 盘。点击[SAVE]键 弹出存储功能菜单,存储功能包括[保存路径]、[内部/外部保存]和[开机设置]选项。存储 功能开启时,不能修改存储设置。

注意:此处保存的是仪器下次上电时使用的配置,即开机设置。

6.8.1 保存路径

保存路径分为[内部]和[外部]。默认路径为[内部],连接 USB 时可以设为[外部]路径。 依次点击[SAVE]->保存路径,选择内部时,仪器将下次上电时使用的配置保存到机器内 部;选择外部时,仪器将下次上电时使用的配置保存到 U 盘中。

6.8.2 <u>内部/外部保存</u>

当保存路径选择内部时,菜单栏显示内部保存;当保存路径选择外部时,菜单栏显示外部保存。

内部保存设置步骤:所需要存储选项设置好后,点击内部保存,在弹出的菜单中,有0~5

共6个状态可选。点击相应的软键即可保存到相应的状态位置。如将开机设置保存到0状态,则需点击0软键,屏幕上弹出"保存 Stat0.bin 成功!",即设置成功。如果输入的状态已存在,点击相应软键会覆盖原来的状态配置。 外部保存设置步骤:所需的存储选项设置好后,点击**外部保存**,仪器自动生成文件名并将

6.8.3 开机设置

状态保存到 U 盘中。

开机设置包括:默认、上一次、0、1、2、3、4和5。仪器默认设置为默认。

- 默认设置:内阻测试仪开机时自动调出默认设置。
- 上一次:内阻测试仪自动保存关机前的设置,再次开机后内阻测试仪会自动调出上一次关机之前的设置。包括所有的系统参数,时钟源除外。

● 0、1、2、3、4 和 5:是指存储到机器内部的开机配置。 按下[**SAVE]->开机设置**软键,选择需要的配置类型。

6.9 加载功能

加载功能可以从内部存储器或 U 盘加载出仪器上电时使用的配置。点击[LOAD]键弹出加载功能菜单,存储功能包括[加载路径]、[内部/外部加载]和[开机设置]选项。 注意:此处加载的是仪器上电时使用的配置,即开机设置。

6.9.1 加载路径

加载路径分为[内部]和[外部]。 依次点击[LOAD]->加载路径,点击相应软键选择内部或外部。

6.9.2 内部/外部加载

当加载路径选择内部时,菜单栏显示内部加载;当加载路径选择外部时,菜单栏显示外部加载。

内部加载设置步骤:加载路径设置为内部,点击**内部加载**,在弹出的菜单中,有0~5共6 个状态可选。点击相应的软键即可加载到相应的开机设置。若当前状态有保存的开机设

置,屏幕上显示"StatX.bin 加载成功!";若当前状态没有保存的开机设置,屏幕上显示 "加载失败 StatX.bin 不存在!"。

外部加载设置步骤:将 U 盘插入前面板 USB HOST 接口,加载路径设置为外部,点击**外** 部加载,使用上/下键选择.csv 文件,点击**[OK]**加载该文件。

6.9.3 开机设置

开机设置包括:默认、上一次、0、1、2、3、4和5。仪器默认选择为默认。

按下[LOAD]->开机设置软键,选择需要的配置类型,即可完成开机设置。

6.10 调零

为了除去仪器本身偏置电压或测量环境产生的误差,在测量之前执行调零。 进行测试前,需要首先对仪器调零。调零前,用正确方法对测试线短路,再按[0ADJ]按 钮执行调零,界面会显示"调零失败/成功",2秒之后消失。 注意:

- 调零的范围小于等于各量程正负 1000dgt。
- 调零执行所有量程调零。
- 即使切断电源,调零后的补偿值仍继续保持。
- 可以在 EXTI/O 的 0ADJ 端子上执行调零。
- 调零成功后继续调零,如果调零失败,则保留上一次调零结果。

6.11 Local 键

点击[Local],屏幕上锁屏图标亮起,点击除此键的任意按键都是无效操作。再次点击该按键,屏幕上锁屏图标变为灰色。 在远程控制模式下,点击[Local],可以将远程控制切换为本地控制。

6.12 TRIG 键

手动触发时按此键,按一次触发一次测量。

6.13 加/减键

快速调整电压、电阻量程。默认调整电阻量程,屏幕左上角显示为Ω。按下[Range],切 换为调整电压量程,量程快捷标识切换为 V。 注意:使用加/减键调整量程,无法将量程调整为自动。

6.14 <u>Range</u>键

按下[Range],设置电压和电阻的量程。

6.15 <u>ESC</u>键

使用[ESC]按键返回或者取消当前操作。[ESC]按键的功能包括取消输入/取消弹出框/取消 子菜单。

6.16 P键

用于将仪器状态恢复到出厂默认值。

功能	默认值			
Ra	nge			
测量类型	电压&电阻			
电压量程	自动			
电阻量程	自动			
ΜΕΑ				
采样速率	慢速			
平均值	1			
触发源	内部触发			
绝对值	开启			
延时	1			
SAVE	/LOAD			
开机设置	默认			
rs	TAT			
开关	关闭			
数据缓存	1000			
CO	MP			
开关	关闭			

功能	默认值
比较模式	自动
蜂鸣器	关闭
电阻模式	上下限
电压模式	上下限
Ut	ility
屏幕亮度	50%
按键音	开启
语言	中文
IP 地址	192.168.1.127
子网掩码	255.255.255.0
IP 模式	手动
串口-波特率	9600
串口-数据位	7
串口-校验位	无校验
串口-停止位	1

表 6.1 出厂默认值

7 <u>外部控制(EXT I/O)</u>

EXTI/O 接口提供外部输出和外部控制功能。连接时请先阅读注意事项。

警告:

为防止发生触电事故和仪器故障, 连 EXTI/O 连接器的配线时, 请遵守下述事项。

- 请在切断本仪器以及连接仪器的电源之后再进行连接。
- 如果配线在操作期间脱离,则可能会接触到其他导电部件,非常危险。
- 请用螺丝可靠地固定外部连接器。
- 请对连接到 EXTI/O 连接器上的仪器和装置进行适当的绝缘。

注意:

- 请勿向 EXTI/O 连接器输入额定值以上的电压或电流。
- 使用继电器时,请务必安装续流二极管。
- 请勿使 ISO_5V 与 ISO_COM 形成短路。

图 7.1 EXT I/O 连接器

针序号	信号名称	I/O	功能	逻	辑
1	TRIG	IN	外部触发	负	边沿
2	(预约)	IN	-	-	-
3	(预约)	IN	-	-	-
4	LOAD1	IN	读取编号 Bit1	负	电平
5	LOAD3	IN	读取编号 Bit3	负	电平
6	LOAD5	IN	读取编号 Bit5	负	电平

外部控制 (EXT I/O)

针序号	信号名称	I/O	功能	逻	辑
7	MANU	IN	比较器手动控	负	电平
			制		
8	ISO_5V	-	绝缘电源 5V 输	-	-
			出		
9	ISO_COM	-	绝缘电源公共	-	-
			端子		
10	ERR	OUT	测试异常	负	电平
11	R_HI	OUT	电阻判定结果	负	电平
			н		
12	<u>R_LO</u>	OUT	电阻判定结果	负	电平
			Lo		
13	V_IN	OUT	电阻判定结果	负	电平
			IN		
14	(预约)	OUT	-	-	-
15	(预约)	OUT	-	-	-
16	(预约)	OUT	-	-	-
17	(预约)	OUT	-	-	-
18	PASS	OUT	判定结果 PASS	负	电平
19	(预约)	OUT	-	-	-
20	0 <i>ADJ</i>	IN	调零	负	边沿

针序号	信号名称	I/O	功能	逻	辑
21	CAL	IN	执行自校正	负	边沿
22	LOAD0	IN	读取编号 Bit0	负	电平
23	LOAD2	IN	读取编号 Bit2	负	电平
24	LOAD4	IN	读取编号 Bit4	负	电平
25	LOAD6	IN	读取编号 Bit6	负	电平
26	PRINT	IN	测量值打印	负	边沿
27	ISO_COM	-	绝缘电源公共	-	-
			端子		
28	EOM	OUT	测量结束	负	边沿
29	INDEX	OUT	测量参照信号	负	电平
30	R_IN	OUT	电阻判定结果	负	电平
			IN		
31	V_HI	OUT	电压判定结果	负	电平
			Hi		
32	<u>V_L0</u>	OUT	电压判定结果	负	电平
			Lo		
33	(预约)	OUT	-	-	-
34	(预约)	OUT	-	-	-
35	(预约)	OUT	-	-	-
36	(预约)	OUT	-	-	-

针序号	信号名称	I/O	功能	逻	辑
37	UNPASS	OUT	判定结果	负	电平
			UNPASS		

表 7.1 EXT I/O 输出端子

注意: 连接器的外壳连接到本仪器的外壳(金属部分)上,同时也连接(导通)到电源插座的保护接地端子上。

7.1 输入端子功能

• TRIG

外部触发输入,当触发源设为外部时,将TRIG从高电平信号变为低电平信号时,在跳变边沿触发一次测量。内部触发时,不能进行触发测量。

• $\overline{LOAD0} \sim \overline{LOAD6}$

用于外部输入选择调用的面板显示编号,当编号选择后输入TRIG信号,设备则读入选中的面板显示编号对应的配置进行测量。如果当输入TRIG时,编号值未改变,进行外部触发时执行一次测量。

• 0*ADJ*

外部输入控制调零功能,当信号从高电平变为低电平信号时,以中断的形式触发应用程序 执行一次调零功能。

• **PRINT**

外部输入控制截图功能,当信号从高电平变为低电平信号时,以中断的形式触发应用程序 执行一次截图功能。

• CAL

外部输入控制校正功能,当信号从高电平变为低电平信号时,以中断的形式触发应用程序 执行一次校正功能。

• MANU

外部输入控制比较器功能,默认为高电平,在电平变化时(如高到低或低到高),以中断的 形式触发应用程序读取目前电平状态,如果中断产生且电平为低电平,则比较器功能开 启,如果为高电平则比较器功能关闭。

7.2 输出端子功能

• EOM

测量结束信号,分为 HOLD 模式和 PULSE 模式。在外部触发模式时,测量结束后 HOLD 模式一直保持 EOM 为低电平持续到下次测量开始(外部触发产生时)恢复高点平,PULSE 模式则输出可配置宽度的低电平脉冲后恢复高电平状态;在内部触发模式时,测量结束后 HOLD 模式根据测量模式输出固定宽度的低电平脉冲后恢复高电平状态,PULSE 模式则输 出可配置宽度的低电平脉冲后恢复高电平状态。

• **INDEX**

CN

测量过程指示信号,在等待触发状态、延迟状态、自校正状态及运算状态时输出 INDEX 信号为低电平,量程配置状态、数据采集状态及数据传输和运算状态时输出信号为高电 平,该信号从高变低可拆下测试物。

• \overline{ERR}

测量异常输出信号,分为同步输出和异步输出两种模式。在同步输出模式时,ERR 状态和 EOM 同步输出,在 EOM 输出为低电平期间判断 ERR 状态有效:在异步输出模式时, ERR 状态实时更新,与 EOM 无同步时序关系。

• $\overline{R_{HI}}$, $\overline{R_{IN}}$, $\overline{R_{LO}}$, $\overline{V_{HI}}$, $\overline{V_{IN}}$, $\overline{V_{LO}}$, \overline{PASS} , \overline{UNPASS}

比较器功能输出结果,R-HI、R-IN、R-LO、V-HI、V-IN、V-LO分别代表电阻和电压的 比较结果。PASS 信号根据测量模式不同判断条件不同,在电阻电压模式下,当电阻比较 结果为 R-IN 且电压为 V-IN 时,PASS 为低电平;在电阻模式下,比较结果为 R-IN 时, PASS 为低电平;在电压模式下,比较结果为 V-IN 时,PASS 为低电平。UNPASS 信号为 PASS 信号逻辑取反输出。

注意:

- 本仪器测量条件变更时,不能使用 I/O 信号。
- 接通电源时, EOM信号和INDEX信号被初始化为 HIGH(OFF)。
- 没有必要切换测量条件时,请将*LOAD0~LOAD6*全部固定为 Hi 或 Lo。
- 为了避免错误判定,请通过PASS与UNPASS信号两者确认比较器的判定。

8 模拟输出

电阻测量值的模拟输出是通过将模拟输出量接到记录仪上,从而记录电阻值的变化。

- 为了避免触电与仪器故障,连接模拟输出端子时,请将本仪器与连接仪器的电源设置为 OFF。
- 为避免损坏本仪器,请不要短接输出端子或输入电压。

8.1 <u>连接模拟输出</u>

模拟输	出规格
输出电压	DC 0V~DC 3.1V (f.s.)
分辨率	12 位分辨率(约 1mV)
输出电阻	100Ω
输出项目	电阻测量值 (显示计数值) OF, 测试异常
	时固定为 3.1V 负值时固定为 0V
输出速率	0 计数值~31000 个计数值 0V~3.1V
输出精度	电阻测试精度士 0.2% f.s.(温度系数士
	0.02%f.s./°C)
响应时间	电阻测量响应时间+采样时间+ 1 ms

表 8.1 模拟输出规格

模拟输出

图 8.1 连接图

注意

- 输出阻抗为 100Ω。请使用输入阻抗 5MΩ以上的连接仪器。
- 如果连接电缆,则可能会拾取外来噪音。请根据需要在连接的仪器上使用带通滤波器等。将模拟输出的 GND 端子连接到地线 (外壳金属部分)上。
- 输出电压根据电阻测量的采样时序更新。
- 记录的波形为阶梯状。(因为输出电路的响应相对于更新周期来说非常快)
- 自动量程下,由于量程切换,即使电阻值相同,输出电压也为 1/10(或 10 倍)。建议 在手动量程下使用。
- 变更设定时(量程切换等)、电源 OFF 时,输出被设为 0 V。

9 远程控制

远程控制开启时,界面右上角显示的 Local 切换为 Remote。

USB 远程控制 9.1

使用 USB 连接线连接计算机 USB 口与内阻测试仪后面板 USB 接口。此时内阻测试仪测 量显示界面右上角显示 USB 已连接标识。

从以下地址下载并安装 IO 软件:

https://www.keysight.com/main/software.jspx?ckey=2175637&lc=chi&cc=CN&ni d=-11143.0.00&i d=2175637

打开 IO 软件, 找到该设备, 发送一条指令看是否正常通信, 取得正常通信后, 可使用 SCPI 指令远程控制内阻测试仪。

例如:

查询 :FETC? (读取最新的测量值)

响应 288.02E-3, 1.3921E+0 (ΩV功能)

电阻测量值为 288.02mΩ , 电压测量值为 1.3921V

9.2 LAN 远程控制

将计算机后端网口与内阻测试仪后面板网口用 LAN 网线连接。 依次点击[Utility]->通讯设置->LAN,设置内阻测试仪 LAN 参数。

图 9.1 设置 LAN 参数

手动配置电脑的 IP 等信息,设置计算机以太网属性:

远程控制

果网络支持此功能,则可以获取 系统管理员处获得适当的 IP 设置	l自动指派的 IP 设置。否则,你需要从风置。
)自动获得 IP 地址(O)	
使用下面的 IP 地址(S):	
IP 地址(]):	192.168.1.111
子网掩码(<u>U</u>):	255 . 255 . 255 . 0
默认网关(<u>D</u>):	• • •
)自动获得 DNS 服务器地址(E	3)
●使用下面的 DNS 服务器地址	±(E):
首选 DNS 服务器(P):	9 (R) K
备用 DNS 服务器(<u>A</u>):	· · ·
□ 浪中时险证没罢(1)	#8.00

图 9.2 设置计算机以太网属性

打开 IO 软件,连接成功后,LAN 列表中会出现该设备。如果没有出现该设备,可手动添加设备,输入设备的 IP 地址和协议,测试 VISA 地址,点击 OK 添加新设备。

Select from List Enter Ad	dress	
Set LAN Address:		
Hostname or IP Address:	192.168.1.37	
TCPIP Interface ID:	TCPIP0	-
Set Protocol:		
Instrument (VXI-11)	Remote Name:	inst0
HiSlip	Remote Name:	hislip0
Socket	Port Number:	5025
Verify Connection:		
Allow *IDN Query Test This VISA Address	TCPIP0::192.168.1 Verified	.37::5025::SOCKET
View Web Page:		
Instrument Web Interface		
		OK Canc

图 9.3 手动添加设备

成功连接后,机器测量显示界面右上角网口图标显示如下:

版权所有©青岛汉泰电子有限公司

图 9.4 网口图标显示

同 USB 远程控制一样,取得正常通信后,可使用 SCPI 指令控制电源输出。 如果局域网内有 DHCP 服务器,可以打开 DHCP 功能,仪器会自动从 DHCP 服务器获取 IP 等信息,不需要手动设置。

注意:局域网内没有 DHCP 服务器,必须手动配置 IP 等信息。

9.3 串口控制

依次点击[Utility]->通讯设置->串口,设置内阻测试仪串口参数。

点击**波特率**,可选择的波特率有 9600、19200、38400、57600、115200 和 230400。 点击**数据位**,可选择的数据位有 7 和 8。

品击**数据12**,可远洋的数据12月 / 柏 o。

点击**校验位**,可选择无校验、奇校验和偶校验。

点击**停止位**,可选择的停止位有1和2。

使用 RS232/485 电缆连接计算机 RS232/485 口与内阻测试仪后面板 RS232/485 接口。

图 9.5 RS232/485 连接器

针编号	信号名称
1	NC
2	RS232_TX
3	RS232_RX
4	RS485_A
5	GND
6	NC
7	NC

针编号	信号名称
8	NC
9	RS485_B

表 9.1 RS232/485 连接器针编号

打开 IO 软件,选择添加设备,设置对应的波特率、数据位、校验位和停止位,测试 VISA 地址,点 OK 添加新设备。同 USB 远程控制一样,取得正常通信后,可使用 SCPI 指令远程控制内阻测试仪。

10 故障处理

按下电源键仪器仍然黑屏,无法开机。

- a.检查电源接头是否接好。
- **b.**检查电源键是否按实。
- c.检查保险丝是否熔断。如需更换保险丝,请使用符合本产品规格的保险丝。

d.做完上述检查后,重新启动仪器。

e.如果仍然无法正常使用本产品,请与 Hantek 联系。

按键输入无效

- a.检查按键是否处于锁定状态。
- **b.**是否使用外部远程控制。
- c.如果仍然无法正常使用本产品,请与 Hantek 联系。

测量值不稳定

- a.是否未进行四端子连接。
- **b.**探头周边是否有金属件。

原因:如果要测量的电池与探头周边有金属件,则可能会因涡电流的感应现象而导致测量值波动。

对策:测量时,请尽可能远离金属部分。

将电缆缠绕在一起,尽可能缩小分支部分的面积。

c.是否混入噪声。

对策:将电缆缠绕在一起,尽可能缩小分支部分的面积。

对电缆进行屏蔽,并连接到地线上。

d.是否使用多台该仪器同时进行测量。

原因:多台仪器同时测量时,因相互之间的测量信号产生干扰,从而发生测量值波动的现象。

对策:测量时,请使用测量电流脉冲输出功能错开测量时序。

请尽可能不要重叠探头。放置本仪器时,请勿叠放。

e.身体是否紧贴在本仪器前面进行测量

原因:可能会因本仪器电路的感应信号而拾取噪音,导致测量值波动。

对策:测量时,请与本仪器保持 20cm 以上的距离。

f.如果仍然无法正常使用本产品,请与 Hantek 联系。

11 <u>附录</u>

11.1 性能指标

精度保证条件

温湿度范围	23℃士 5℃、80%RH 以下(没有结露)
调零	实施调零后
预热时间	30 分钟以上
测量状态	应与调零时相同的探头形状、配置与测量环境下进行测量

精度

表 11.1 精度保证条件

1H /X								
	페므	HBT3561	HBT3562	HBT3562	HBT3563	HBT3564		
	空亏	А	A A		А	А	HBI3300A	
电	量程	110V	210V	360V	1100V	1600V	2000V	
压	最大值	121V	231V	396V	1210V	1760V	2200V	
测	最小分辨		1\/			10	~	
量	率	ι μν						
参	<u></u> 特	10.01% rda 12 dat						
数	们加快			10.01				
		量程	最大值最小分辨		测试电流		精确度	
中仍	调量分粉			率		3 mΩ	30 mΩ 及以上	
черь	山则里今奴	3 mΩ	3.6 mΩ	0.1 μΩ	100 mA	±	±0.5% rdg ±5	
		30 mΩ	36 mΩ	1 μΩ	100 mA	0.5%	dgt	

.

.

300 mΩ	360 mΩ	10 μΩ	10 mA	rdg
3Ω	3.6 Ω	100 μΩ	1 mA	±10
30 Ω	36Ω	1 mΩ	100 μA	dgt
300 Ω	360 Ω	10 mΩ	10 µA	
3600 Ω	3610 Ω	100 mΩ	10 µA	

表 11.2 精度

常规特性

使用温、湿度范围	0℃~40℃、800/oRH以下(没有结露)	
保存温、湿度范围	-10°C~S0°C、800/oRH以下(没有结露)	
精度保证温湿度范围	23℃ ± 5℃、800/oRH 以下(没有结露)	
精度保证范围	1年	
使用场所	室内使用,海拔高度 2000 m 以下	
额定电源电压	110 V ±10 % or 220 V ± 10 %	
额定电源频率	47 to 63 Hz	
尺寸(WxHxD)	低压: 208.5mm*84.5mm*264mm	
	高压: 208.5mm*84.5mm*344mm	

表 11.3 常规特性

其他功能

测量方法	交流4端子法			
电流频率	1 kHz			
响应时间	约 5 ms			
输入阻抗	1ΜΩ 10ΜΩ			

开路端子	电压	12 V peak		15 V peak		peak		
采样速率	测量速度	快速		中	速	慢速		
(频率: 50	ΩV	60 ms		300	300 ms		600 ms	
Hz/60 Hz)	Ω or V	40 ms		200	ms	400 ms		
总线路间隔(错	量程	3 mΩ		30 mΩ	300 mΩ		3Ω	
误检测)	检测线	3Ω		3Ω	20 Ω		20 Ω	
	源线	3Ω		3Ω	20 Ω		200 Ω	
是否可能	调零				是			
电流辅	〕出			脉	(冲,连续			
比较	器	判定结果:Hi/IN/Lo (电阻电压分别独立判定)			判定)			
		PASS/FAIL 判定:对电阻判定结果与电压判定结果进行 AND			进行 AND 运算,			
		然后进行 PASS/UNPASS 输出(EXT 1/0 输出)			输出)			
统计运	算	平均值、最大	大值、	最小值、母林	示准偏差、采	样标准	偏差、工序能力指	
			数	(偏移)、工	 ,能力指数([偏差)	等	
延迟时	间			1 ms	s - 9999 ms			
平均值				1,	2, 4, 8 次			
保存/训	周出			计数值	最高 1000 组	1		
触发		内部/外部/手动						
按口	标配	RS232/485, USB, LAN, I/O, Analog Output				output		
按口	选配	GPIB (仅 HBT4000H 系列配备)						
显示	₹	4.3寸 LCD						

附录

交流输入	110 V ±10 % or 220 V ± 10 %, 47 to 63 Hz			
	低压: 208.5mm*84.5mm*264mm			
尺寸(WXHXD)	高压: 208.5mm*84.5mm*344mm			

表 11.4 其他功能

11.2

.

, ,

附录 A:型号与附件

订单信息	订单号
主机型号	
110V, RS232/485,USB,LAN,IO,ANALOG OUTPUT	HBT3561A
210V, RS232/485,USB,LAN,IO,ANALOG OUTPUT	HBT3562A
360V, RS232/485,USB,LAN,IO,ANALOG OUTPUT	HBT3563A
1100V, RS232/485,USB,LAN,IO,ANALOG	HBT3564A
OUTPUT	
1600V, RS232/485,USB,LAN,IO,ANALOG	HBT3565A
OUTPUT	
2000V, RS232/485,USB,LAN,IO,ANALOG	HBT3566A
OUTPUT	

表 11.5 内阻测试仪型号

订单信息	订单号
标配附件	
符和所在国标准的电源线	

订单信息	订单号
方口 USB 线	
夹型测试线	HT2107
针型测试线	HT2100
装箱单	

表 11.6 标配附件

11.3 <u>附录 B: 交流四端子测试法</u>

本系列内阻测试仪采用交流四端子测试法,在测量过程中扣除了导线的线电阻及导线与测试物之间的接触电子,使测量结果更为准确。

电阻计电路

图 11.1 交流四端子测量法原理图

交流四端子测量法原理:如图所示,通过电流输出端子向被测对象输入交流电流 ls,在电压测量端子上测量因被测对象的阻抗产生的电压降 Vis。此时电流端子被连接在内部高阻抗电压计上,因此导线电阻和接触电阻的电阻 R2 和 R3 上几乎没有电流流过,从而消除了 R2 和 R3 上的电压降,使测量结果更为准确。

11.4 <u>附录 C:执行调零</u>

为除去因本仪器偏置电压或测量环境而产生的残留成分,请在测量之前执行调零,测试精度在调零之后进行规定。调零是指减去测量0时残留的值以调节零点的功能,因此需要在连接0的状态下进行调零。考虑到在现实中连接没有阻值的待测物是不现实的。所以,在实际调零过程中,通过建立接近0的状态进行调零。如果未以正确的方法执行调零,则无法得到正确的测量值。

11.4.1 调零接线原理

根据欧姆定律 E=I*R,为了通过建立接近 0 的状态,需要使 SENSE-H(红)与 SENSE-L (黑)之间直接短路,SENSE-H 与 SENSE-L 之间的电压近似为 0V,具体计算如下所示:

R_{SEH}、R_{SEL}为 SENSE-H、SENSE-L 配线电阻 R_{SOH}、R_{SOL}为 SOURCE-H、SOURCE-L 配线电阻 R_{Short}为短路电阻 I₀为从 SENSE-H 流入 SENSE-L 电流 I 为从 SOURCE-H 流入 SOURCE-L 电流 则: E=(I₀×R_{SEL})+(I₀×R_{SEH}) =(0×R_{SEL})+(0×R_{SEH}) =0(V) 所以,通过上述配线方式,可将 SENSE-H、SENSE-L 间电压正确的保持为 0V,因此能适 当的进行调零。

11.4.2 利用夹型测试线调零

利用夹型测试线调零,需将红黑表笔短接,请按如下所示连接测试线:

图 11.3 夹型测试线调零

11.4.3 利用针型测试线调零

利用针型测试线调零,需将红黑表笔的内针接线短接,请按如下所示连接测试线:

图 11.4 针型测试线调零

11.5 附录 D:保修概要

青岛汉泰电子有限公司(以下简称 Hantek)承诺其生产仪器的主机和附件,在产品保修期内无任何材料和工艺缺陷。

在保修期内,若产品被证明有缺陷,Hantek 将为用户免费维修或更换。详细保修条例请参见 Hantek 官方网站或产品保修卡的说明。欲获得维修服务或保修说明全文,请与 Hantek 维修中心或各地办事处联系。

除本概要或其他适用的保修卡所提供的保证以外, Hantek 公司不提供其他任何明示或 暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任 何情况下,Hantek 公司对间接的,特殊的或继起的损失不承担任何责任。

地址:山东省青岛市高新区宝源路 780 号,联东 U 谷 35 号楼

- 总机: 400-036-7077
- 电邮: service@hantek.com
- 电话: 0532-55678770, 55678772, 55678773
- 邮编:266000
- 官网: www.hantek.com

青岛汉泰电子有限公司