

HDG3000B 系列

任意波形信号发生器

用户手册 2022.05

保证和声明

版权

本文档版权属青岛汉泰电子有限公司所有。

声明

青岛汉泰电子有限公司保留对此文件进行修改而不另行通知之权利。青岛汉泰电子有限公司承诺所提供的信息正确可靠,但并不保证本文件绝无错误。请在使用本产品前,自行确定所使用的相关技术文件规格为最新有效的版本。若因贵公司使用青岛汉泰电子有限公司的文件或产品,而需要第三方的产品、专利或者著作等与其配合时,则应由贵公司负责取得第三方同意及授权。关于上述同意及授权, 非属本公司应为保证之责任。

产品认证

Hantek 认证 HDG3000B 系列任意波形信号发生器满足中国国家行业标准和产业标准,并且已通过 CE 认证。

联系我们

如果您在使用青岛汉泰电子有限公司的产品过程中,有任何疑问或不明之处,可通过以下方式取得服 务和支持:

电子邮箱: service@hantek.com, support@hantek.com

网址: <u>http://www.hantek.com</u>

目录

目	录		I
插	图清单…		XI
表	格清单…		XII
1	安全要	求	1
	1.1	常规安全事项概要	1
	1.2	安全术语和符号	2
	1.3	测量类别	2
	1.4	工作环境	3
	1.5	保养和清洁	4
	1.6	环境注意事项	4
2	产品特	色	6
3	文档概	述	7
4	快速入	门	9
4	4.1	一般性检查	9
4	4.2	外观尺寸	9
2	4.3	使用前准备	.10
	4.3.1	连接电源	.10

.

-

	4.3.2	调整提手	
	4.3.3	设置系统语言	11
4	.4	产品介绍	
	4.4.1	前面板介绍	12
	4.4.2	后面板介绍	14
	4.4.3	用户界面介绍	15
4	.5	参数数值方法	15
	4.5.1	数字键盘	16
	4.5.2	方向键和旋钮	16
4	.6	使用内置帮助系统	17
5	输出基	本波形	18
5	.1	选择通道	18
5	.2	<u> </u>	
		以直甩但乡奴	
	5.2.1	皮直通道参数	
	5.2.1 5.2.2	这重通道参致 选择基本波形	
	5.2.1 5.2.2 5.2.3	这重通道参数	
	5.2.1 5.2.2 5.2.3 5.2.4	 皮直通旦参奴	
	 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 	 以直通道参致	
	 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 	 皮直通旦参奴	
HDG	5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 3000B 用户	 收置通道参数	

-

	5.2.7	设置对称性	21
	5.2.8	设置脉冲参数	22
	5.2.9	启用通道输出	23
5	.3	输出基本波形实例	23
6	输出任	意波	25
6	5.1	启用任意波功能	25
6	5.2	选择任意波类型	25
7	输出谐	波	
7	.1	谐波功能概述	
7	.2	设置基波参数	
7	.3	设置谐波次数	
7	<i>.</i> .4	设置谐波类型	
7		设置谐波幅度	
7	.6	设置谐波相位	
8	输出调	制波形	32
8	3.1	幅度调制 AM	
	8.1.1	选择 AM 调制	32
	8.1.2	载波波形	32
	8.1.3	载波频率	
版权	所有©青岛》	汉泰电子有限公司	HDG3000B 用户手册

8.1.4	调制源	
8.1.5	调制频率	
8.1.6	调制深度	
8.2	双边带调幅	
8.2.1	选择 DSB-AM 调制	
8.2.2	载波波形	
8.2.3	载波频率	
8.2.4	调制源	
8.2.5	调制频率	
8.2.6	调制深度	
8.3	频率调制 FM	
8.3.1	选择 FM 调制	
8.3.2	载波波形	
8.3.3	载波频率	
8.3.4	调制源	
8.3.5	调制频率	
8.3.6	频率偏差	
8.4	相位调制 PM	
8.4.1	选择 PM 调制	
HDG3000B 用序 IV	□手册	版权所有©青岛汉泰电子有限公司

-

8.4.2	载波波形	
8.4.3	载波频率	
8.4.4	调制源	
8.4.5	调制频率	
8.4.6	相位偏差	
8.5	幅移键控 ASK	
8.5.1	选择 ASK 调制	
8.5.2	载波波形	
8.5.3	载波幅度	40
8.5.4	调制源	40
8.5.5	ASK 帧率	40
8.5.6	调制幅度	40
8.6	频移键控 FSK	41
8.6.1	选择 FSK 调制	41
8.6.2	载波波形	41
8.6.3	载波频率	41
8.6.4	调制源	41
8.6.5	FSK 帧率	42
8.6.6	跳跃频率	42
版权所有©青岛	3汉泰电子有限公司	HDG3000B 用户手册

V

HDG3000B 用 VI	户手册	版权所有©青岛汉泰电子有限公司
8.9.4	调制源	45
8.9.3	载波相位	45
8.9.2	载波波形	45
8.9.1	选择 QPSK 调制	45
8.9	四相相移键控 QPSK	45
8.8.6	调制相位	45
8.8.5	BPSK 帧率	
8.8.4	调制源	
8.8.3	载波相位	
8.8.2	载波波形	
8.8.1	选择 BPSK 调制	44
8.8	二相相移键控 BPSK	44
8.7.6	调制相位	43
8.7.5	PSK 帧率	43
8.7.4	调制源	43
8.7.3	载波相位	43
8.7.2	载波波形	42
8.7.1	选择 PSK 调制	
8.7	相移键控 PSK	42

-

-

8.9.5	QPSK 帧率	46
8.9.6	调制相位	46
8.10	三进制频移键控 3FSK	46
8.10.1	选择 3FSK 调制	46
8.10.2	载波波形	46
8.10.3	载波频率	46
8.10.4	调制源	47
8.10.5	3FSK 帧率	47
8.10.6	跳跃频率	47
8.11	四进制频移键控 4FSK	47
8.11.1	选择 4FSK 调制	47
8.11.2	载波波形	47
8.11.3	载波频率	48
8.11.4	调制源	48
8.11.5	4FSK 帧率	48
8.11.6	跳跃频率	48
8.12	振荡键控 OSK	48
8.12.1	选择 OSK 调制	49
8.12.2	载波波形	49
版权所有©青岛	汉泰电子有限公司	HDG3000B 用户手册

8.12.3	载波频率	
8.12.4	调制源	
8.12.5	调制频率	
8.12.6	震荡时间	
8.13	脉宽调制 PWM	
8.13.1	选择 PWM 调制	
8.13.2	载波波形	
8.13.3	载波占空比	
8.13.4	调制源	
8.13.5	调制频率	
8.13.6	占空比偏差	
9 扫频		53
9.1	开启扫频功能	
9.2	起始频率和截止频率	
9.3	中心频率和频率跨度	
9.4	线性扫频	
9.5	扫频时间	
9.6	返回时间	
9.7	保持时间	
HDG3000B 用		版权所有©青岛汉泰电子有限公司

_

版权所有	有©青岛沤	Q泰电子有限公司	HDG3000B 用户手册
13.	2	阻抗设置	65
13.	.1	同步	65
13 	浦助功	能	65
12.	2	文件操作	62
12.	.1	存储系统	62
12 🗗	字储与i	调用	62
11 ì	十数器.		61
10.	8	触发输出边沿	59
10.	.7	门控极性	59
10.	.6	触发源	59
10.	.5	相位	59
10.	.4	周期	58
10.	.3	计数	58
10.	2	类型	56
10.	.1	开启猝发功能	56
10 🖇	卒发		56
9.1	0	触发输出边沿	55
9.9)	扫频触发源	55
9.8	5	标志频率	55

13	8.3	系统设置	.66
	13.3.1	系统语言	66
	13.3.2	时钟源	66
	13.3.3	开机设置	67
	13.3.4	亮度	67
	13.3.5	系统信息	67
	13.3.6	单位	68
	13.3.7	截图	68
13	8.4	升级固件	. 68
14	远程控	制	.69
14	l.1	安装 Keysight IO libraries suite	.69
14	1.2	通过后置 USB 控制	.72
15	故障处	理	.75
16	附录		.76
16	5.1	附录 A: 附件	.76
16	5.2	附录 B:保修概要	.76

插图清单

冬	4.1 正视图	9
冬	4.2 俯视图	10
图	4.3 前面板	12
图	4.4 后面板	14
图	4.5 用户界面示图	15
图	5.1 同相位前	20
图	5.2 同相位后	21
图	5.3 设置界面示图	24
冬	5.4 输出波形	24
图	6.1 任意波界面示图	25
图	8.1 OSK 调制示例	49
图	10.1 多周期猝发示图	57
图	10.2 无限周期猝发示图	57
图	10.3 门控猝发示图	58
图	11.1 计数器示图	61
图	12.1 存储界面	62
图	12.2 新建界面	63
图	12.3 重命名界面	64
冬	13.1 阻抗示例	66

表格清单

表 3.1 旋钮	7
表 3.2 型号	8
表 6.1 内部函数	29
表 10.1 猝发类型	56

1 <u>安全要求</u>

1.1 常规安全事项概要

仔细阅读下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何 产品。为避免可能的危险,请务必按照规定使用本产品。

● 只有专业授权人员才能执行维修。

● 使用正确的电源线。

只使用所在国家认可的本产品专用电源线。

● 正确连接与断开。

在探头连接到被测量电路之前,请先将探头连接机器;在探头与机器断开之前,请 先将探头和被测电路断开。

将产品接地。

为避免电击,本产品通过电源线的接地导体接地,接地导体必须与地相连在连接本产品的输入或输出端前,请务必将本产品正确接地。

● 正确连接探头。

探头地线与地电势相同请勿将地线连接到高电压上。

● 查看所有终端额定值。

为避免起火或过大电流的冲击,请查看产品上所有的额定值和标记说明。请在连接产品前查阅产品手册以了解额定值的详细信息。

● 请勿开盖操作。

外盖或面板打开时请勿运行本产品。

● 避免电路外露。

电源接通后请勿接触外露的接头和元件。

怀疑产品出现故障时,请勿进行操作。

如果您怀疑此产品已被损坏,可请合格的维修人员进行检查。

- 保持适当的通风。
- 请勿在潮湿环境下操作。
- 请勿在易燃易爆的环境下操作。

▶ 请保持产品表面的清洁和干燥。

符合 A 类要求的设备可能无法对居住环境中的广播服务提供足够的保护。

1.2 <u>安全术语和符号</u>

警告:

本手册中的安全术语:

危险:

表示您如果进行此操作可能会立即对您造成损害。

警告:

注意:

表示您如果进行此操作可能不会立即对您造成损害。

表示您如果进行此操作可能会对本产品或其它财产造成损害。

产品上的安全符号:

警告

壳体接地端

1.3 测量类别

测量类别

本仪器可在测量类别 | 下进行测量。

警告:

本仪器仅允许在指定的测量类别中使用。

测量类别定义

测量类别 | 是指在没有直接连接到主电源的电路上进行测量。例如,对不是从主电源导出的电路,特别是受保护(内部)的主电源导出的电路进行测量。在后一种情况下,瞬间应力会发生变化。因此,用户应了解设备的瞬间承受能力。

- 测量类别Ⅱ 是指在直接连接到低压设备的电路上进行测量。例如,对家用电器、便 携式工具和类似的设备进行测量。
- **测量类别 III** 是指在建筑设备中进行测量。例如,在固定设备中的配电板、断路器、 线路(包括电缆、母线、接线盒、开关、插座)以及工业用途的设备和某些其它设 备(例如,永久连接到固定装置的固定电机)上进行测量。
- 测量类别 Ⅳ 是指在低压设备的源上进行测量。例如,电表、在主要过电保护设备上 的测量以及在脉冲控制单元上的测量。

1.4 工作环境

温度

操作温度: 0℃ - 45℃ 存储温度: -20℃ - 60℃

湿度

≤+104°F(≤+40°C):相对湿度≤90% 106°F~122°F (+41°C~50°C): 相对湿度≤60%

警告:

为避免仪器内部电路短路或发生电击的危险,请勿在潮湿环境下操作仪器。

海拔高度

操作时: 3,000米以下。 不操作时: 15000米以下。

安装 (过电压) 类别本产品由符合安装 (过电压) 类别 Ⅱ 的主电源供电。

警告:

确保没有过电压(如由雷电造成的电压)到达该产品。否则操作人员可能有遭受电击的危

险。

安装 (过电压) 类别定义

安装(过电压)类别!是指信号电平,其适用于连接到源电路中的设备测量端子,其中 已经采取措施,把瞬时电压限定在相应的低水平。 安装(过电压) 类别 || 是指本地配电电平, 其适用于连接到市电(交流电源)的设备。

污染程度

2 类

污染程度定义

- **污染度 1:** 无污染,或仅发生干燥的非传导性污染。此污染级别没有影响。例如:清
 洁的房间或有空调控制的办公环境。
- 污染度 2: 一般只发生干燥的非传导性污染。有时可能发生由于冷凝而造成的暂时性 传导。例如:一般室内环境。
- 污染度 3:发生传导性污染,或干燥的非传导性污染由于冷凝而变为具有传导性。例如:有遮棚的室外环境。
- 污染度 4:通过传导性的尘埃、雨水或雪产生永久的可导性污染。例如:户外场所。

安全级别

1级-接地产品

1.5 保养和清洁

保养:

存放或放置机器时,请勿使液晶显示器长时间受阳光直射。

清洁:

按照操作条件的要求,经常检查机器和探头,请按照下述步骤清洁仪器的外表面: 1)使用不起毛的抹布清除机器和探头外部的浮尘。请千万小心以避免刮擦到光洁的显示 器滤光材料。

2) 使用一块用水浸湿的软布清洁机器。要更彻底地清洁,可使用 75%异丙醇的水溶剂。

注意:

警告:

为避免损坏机器或探头的表面,请勿使用任何腐蚀性试剂或化学清洁试剂。

重新通电之前,请确认仪器已经干透,避免因水分造成电气短路甚至人身伤害。

1.6 环境注意事项

以下符号表明本产品符合 WEEE Directive 2002/96/EC 所制定的要求。

设备回收:

生产该设备需要提取和使用自然资源。如果对本产品的报废处理不当,则该设备中包含

的某些物质可能会对环境或人体健康有害。为避免将有害物质释放到环境中,并减少对 自然资源的使用,建议采用适当的方法回收本产品,以确保大部分材料可正确地重复使 用。

2 <u>产品特色</u>

产品特点

- 频率范围: 1µHz ~ 100MHz/80MHz/60MHz/40MHz/25MHz/15MHz;
- 高达 250MSa/s 采样率, 16bits 垂直分辨率保证波形幅度的精度;
- 标配等性能双通道,相当于两个独立的信号源;
- 高达 2M 的存储深度,保证了创建更多的波形周期以及创建更好的波形细节;
- 4.3 寸彩色 TFT 液晶显示屏,用户界面清晰直观;
- 丰富的调制功能,支持 AM,DSB-AM,FM,PM,ASK,FSK,PSK,BPSK,QPSK,3FSK,4FSK,OSK 和 PWM 等;
- 1µHz 的频率分辨率;阻抗高阻时,幅度范围是 2mV~20Vpp;阻抗 50Ω 时,幅度
 范围是 1mV~10Vpp;
- 内置高分辨 80MHz 频率计;
- 标准通讯界面:前置 USB Host 和后置 USB Device;
- 指数上升、指数下降、心电信号、高斯、半正矢、洛仑兹、双音多频、DC 电压等共 计 160 余种任意信号;
- 内置 16 次谐波发生器功能,输出具有指定次数、幅度和相位的谐波,通常应用于谐 波检测设备或谐波滤波设备的测试中。

HDG3000B 集任意波形发生器、脉冲发生器、函数发生器、谐波发生器、频率计 5 大功 能于一身;采用 DDS 直接数字频率合成技术,可生成稳定、纯净和低失真的输出信号; 人性化的界面设计和键盘布局,给用户带来非凡体验;丰富的配置接口,可轻松实现仪 器计算机控制,为用户测量提供更多解决方案。

3 <u>文档概述</u>

本文档用于指导用户快速了解 HDG3000B 系列信号发生器的前后面板、用户界面及基本操作方法等。

提示:

本手册的最新版本可登陆(http://www.hantek.com)进行下载。

文档编号:

202205

软件版本:

软件升级可能更改或增加产品功能,请关注 Hantek 网站获取最新版本。

文档格式约定:

1 按键

用"方括号+文字(加粗)"表示前面板按键,如 [Utility]表示"Utility"按键。

2 菜单

用 "菜单文字 (加粗) +蓝色" 表示一个菜单选项, 如 基本设置 表示点击仪器当前操 作 界面上的 "基本设置" 选项, 进入 "基本设置" 的功能配置菜单。

3 操作步骤

用箭头 ">" 表示下一步操作, 如 [Utility] > 存储 表示点击 [Utility] 后, 再点击 存储 功能键。

4 旋钮

标识	旋钮
② 多功能	多功能旋钮

表 3.1 旋钮

文档内容约定:

HDG3000B 信号发生器包含以下型号。

型号	通道数	最大频率	CH1/CH2 采样率
HDG3012B	2	15MHz	250MS/s

文档概述

型号	通道数	最大频率	CH1/CH2 采样率
HDG3022B	2	25MHz	250MS/s
HDG3042B	2	40MHz	250MS/s
HDG3062B	2	60MHz	250MS/s
HDG3082B	2	80MHz	250MS/s
HDG3102B	2	100MHz	250MS/s

表 3.2 型号

4 快速入门

4.1 一般性检查

检查运输包装

用户收到机器后请按照下列步骤检查设备:检查是否有因运输造成的损坏:如果发现包装纸箱或泡沫塑料保护垫严重破损,请先保留,直到整机和附件通过电性和机械性测试。

检查附件

关于提供的附件明细, 在本说明书后面的"附录 A: 附件"中进行了说明。如果发现附件 缺少或损坏, 请和负责此业务的经销商联系。

检查整机

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和负责此业务的经销商联系。

4.2 <u>外观尺寸</u>

图 4.1 正视图

快速入门

图 4.2 俯视图

4.3 使用前准备

4.3.1 连接电源

按需要连接电源线。

该系列信号发生器可输入的交流电源的规格为:100-120 VAC (±10%),45-440 Hz 或 120-240 VAC (±10%),45-66Hz。请使用附件提供的电源线将机器连接至 AC 电源。按下前面板左下角的电源开关,打开仪器。如果仪器没有打开,请确认电源线是否牢固 连接,同时确保仪器连接到通电的电源。

电源开关:

要关闭仪器,请按电源开关。

警告:

为避免电击,请确保仪器正确接地。

4.3.2 调整提手

4.3.3 设置系统语言

该信号发生器支持中英文菜单,并提供相应的帮助信息、提示信息和界面显示。 按下 [Utility] > Language 选择需要的语言。当选择"中文"或"English"时,菜单、 帮助信息、提示消息和界面分别以中文或英文显示。

要调整仪器的提手,请握住仪器两侧的提手并向外拉,然后旋转提手。

4.4 <u>产品介绍</u>

本章介绍机器的前后面板和用户界面。

4.4.1 前面板介绍

图 4.3 前面板

1. 开关键

2. 菜单软键

与其左侧菜单一一对应,按下任一软键激活对应的菜单。

3. 功能键

- [Wave]: 选择当前通道将要输出的波形。
- [Setting]: 设置当前通道输出波形的参数。
- [Utility]:辅助功能与系统设置。用于设置辅助功能和系统参数。
- [Mod]:可生成调制波形。提供多种模拟调制和数字调制方式,可产生 AM, DSB-AM, FM, PM, ASK, FSK, PSK, BPSK, QPSK, 3FSK, 4FSK, OSK 和 PWM 调制信号。
- [Sweep]: 可产生"正弦波"、"方波"、"三角波"、"脉冲波"、"谐波"和"任 意波(DC 除外)"的扫频信号。
- [Burst]: 可产生"正弦波"、"方波"、"三角波"、"脉冲波"、"谐波"和"任 意波 (DC 除外)"的猝发输出。
- [Trigger]: 手动触发按键。在扫频或猝发模式下,用于手动触发 CH1 或 CH2 产生 一次扫频或猝发输出(仅当 1Output 或 2Output 打开时)。
- [CH1/2]:通道切换。按下此按键切换菜单设置通道。
 选择通道 CH1 后,用户可以设置 CH1 的波形、参数和配置。
 选择通道 CH2 后,用户可以设置 CH2 的波形、参数和配置。

4. CH1/CH2 输出端

BNC 连接器,标称输出阻抗为 50Ω。 当 1Output 或 2Output 打开时 (背光灯变亮),对应的连接器输出已配置波形。

5. 通道输出开关

打开或关闭 CH1 和 CH2 输出。

6. 方向键

在使用旋钮 • 和方向键设置参数时,用于切换数值的位。 在文件名输入时,用于移动光标的位置。

7. 旋钮

在参数设置时,用于增大(顺时针)或减小(逆时针)当前突出显示的数值。 在存储或读取文件时,用于选择文件保存的位置或用于选择需要读取的文件。 在输入文件名时,用于切换软键盘中的字符。

8. 数字键盘

用于输入参数,包括数字键0至9、小数点"."、符号键"+/-"。注意:要 输入一个负数,需在输入数值前输入一个符号"-"。(关于如何使用数字键盘 输入参数,请参考"参数设置方法"一节的介绍)。

9. LCD

4.3 寸彩色 TFT 液晶显示屏,显示当前功能的菜单和参数设置、系统状态以及提示 消息等内容。

10. 恢复默认设置

用于将仪器状态恢复到出厂默认值。

11. 帮助

要获得任何前面板按键或菜单软键的上下文帮助信息,按下该键后,再按下您需要 获得其帮助信息的按键。

12. USB HOST 接口

可接入外部存储设备 (U 盘), 用于保存或加载设置文件等。外部存储设备的文件系 统格式为 FAT32, 内存不得大于 32G。

4.4.2 后面板介绍

图 4.4 后面板

1. CH1/CH2 同步输出端

BNC 连接器,标称输出阻抗为 50Ω,输入阻抗为 1KΩ。 其功能由 CH1 当前的工作模式决定。

- ExtMod: 若 CH1 开启调制模式,并且使用外部调制源,该连接器接收一个来 自外部的调制信号。
- Trig:若 CH1 开启扫频或猝发功能且使用外部触发源, 该连接器接收一个来自外部的触发信号(可设置该信号的极性)。
- Sync:当 1Output 打开时,该连接器输出与 CH1 当前配置相匹配的同步信号 (参考"同步"一节的介绍)。

2. 10 MHz 输入/输出端 (10 MHz In/ Out)

BNC 母头连接器, 标称输出阻抗为 50Ω, 输入阻抗 5KΩ。其功能由仪器使用的时 钟类型决定。 HDG3000B 可以使用内部时钟或外部时钟(参考"<u>时钟源</u>"一节的 介绍) 。

- 若仪器使用内部时钟源,该连接器(用作 10MHz Out)可输出由仪器内部晶振产生的 10MHz 时钟信号。
- 若仪器使用外部时钟源,该连接器(用作 10MHz ln)接收一个来自外部的 10MHz 时钟信号。
- 该连接器通常用于在多台仪器之间建立同步(参考"<u>同步</u>"一节的介绍)。
- 3. Counter (0~3.3V, 外部信号输入端)

BNC 母头连接器,标称阻抗为 500Ω,用于接收计数器测量的外部信号。

- 4. USB DEVICE 接口
- 5. 安全锁孔
- 6. AC 电源插口

4.4.3 用户界面介绍

下面的内容简单描述和介绍了 HDG3000B 的用户界面, 这样您就可以在最短的时间内熟 悉本系列产品。

图 4.5 用户界面示图

1. 显示所选中通道

CH1 和 CH2。

2. 通道参数

显示当前通道的波形参数。

按下相应的软键并使用数字键盘或方向键和旋钮 来修改该参数。当前可以修改的参数将被突出显示,数字的红色背景指示当前光标位置。

3. 波形

显示当前通道选择的波形类型。

4. 通道配置

显示各通道当前的输出配置,包括波形类型、输出阻抗、工作模式及输出状态。 输出阻抗:高阻,50Ω。 模式:调制,扫频、猝发、连续输出。

5. 菜单

显示当前已选中功能对应的操作菜单。例如:图中显示 [Wave] 按钮的功能菜单。

4.5 参数数值方法

参数设置可通过数字键盘或旋钮 🖤 和方向键完成。

4.5.1 数字键盘

数字键盘由以下几部分组成:

1. 数字键

数字键 0~9 用于直接输入所需的参数值。

2. 小数点

按下该键,当前光标处插入一个小数点"."。

3. 符号键

符号键"+/-"用于改变参数的符号。首次按下该键,参数符号为"-",再次按下 该键,符号切换为"+"。

4.5.2 方向键和旋钮

方向键功能包括:

在参数输入时,方向键用于移动光标以选择当前编辑的位。 在编辑文件名时,方向键用于移动光标的位置。

旋钮 🖤 功能包括:

- 在参数可编辑状态,旋转旋钮
 将以指定步进增大(顺时针)或减小(逆时针)
 参数。
- 在编辑文件名时,旋钮 用于选中软键盘中不同的字符。
- ▶ 在 [Wave] > Arb > 类型 > 自定义 中, 旋钮♥♥用于选中不同的任意波文件。

在存储与调用功能中,旋钮
 用于选择文件保存的位置或用于选择需要读取的文件。

4.6 使用内置帮助系统

要获得任何前面板按键或菜单软键的帮助信息,首先按下前面板的[?]按键,然后再按下你所需要获得帮助的按键。

如果内容视图中有其他主题的索引,用户可以旋转旋钮 光选择不同的索引,按下旋

田 可进入相应的主题内容。 再次按下 [?] 按键即可退出。

5 输出基本波形

HDG3000B系列函数/任意波形发生器可从单通道或同时从双通道输出基本波形,包括正弦波、方波、三角波、脉冲和噪声。开机时,通道默认配置频率为1kHz,幅度为200mVpp的正弦波。本章介绍如何配置仪器输出各类基本波形。

5.1 选择通道

用户可以配置 HDG3000B 从单通道或同时从双通道输出基本波形。配置波形参数之前, 请选择所需的通道。开机时, 仪器默认选中 CH1。 按下前面板 [CH1/2] 按键, 用户界面中对应的通道区域变亮。此时, 您可以配置所选通 道的波形和参数。

注意: CH1 与 CH2 不可同时被选中。您可以首先选中 CH1, 完成波形和参数的配置后,

再选中其他通道进行配置。

5.2 设置通道参数

5.2.1 选择基本波形

HDG3000B 可输出 5 种基本波形,包括正弦波、方波、三角波、脉冲和噪声。开机时, 仪器默认选中正弦波。

按下前面板的 [Wave] 按键,再按下菜单中对应的软键即可选中波形,并进入参数 设置菜单。此时,用户界面显示已选中波形形状。

按下 [Wave] > CH1=CH2 软键, 可将另一个通道的设置更改为与当前通道的设置 相同。

5.2.2 设置频率

频率是基本波形最重要的参数之一。基于不同的型号和不同的波形,频率的可设置范围 不同,请参考本产品数据手册中"频率特性"的说明。默认值为1kHz。 屏幕显示的频率为默认值或之前设置的频率。当仪器功能改变时,若该频率在新功能下 有效,则仪器依然使用该频率;若该频率在新功能下无效,仪器则弹出提示消息,并自 动将频率设置为新功能的频率上限值。

按下 [Setting] > 频率。此时,使用数字键盘输入频率的数值并在弹出的单位菜单中选

择所需的单位或者使用方向键和旋钮 修改当前值。

- 1. 频率数值的输入方法请参考"参数设置方法"中的介绍。
- 2. 可选的频率单位有: MHz、kHz、Hz、mHz和 uHz。

- 按下 [Utility] > 单位,按下相应软键可将参数中的频率切换为周期。按下 [Setting] > 周期 即可修改周期参数。
- 4. 可选的周期单位有: sec、msec、usec 和 nsec。

5.2.3 设置幅度

幅度的可设置范围受"阻抗"和"频率"设置的限制,请参考本产品数据手册中"幅度特性"的说明。默认值为 200mVpp。

屏幕显示的幅度为默认值或之前设置的幅度。当仪器配置改变时(如频率),若该幅度有效,则仪器依然使用该幅度。若该幅度无效,仪器则弹出提示消息,并自动将幅度设置为新配置的幅度上限值。

按下 [Setting] > 幅度。此时,使用数字键盘输入幅度的数值并在弹出的单位菜单中选

择所需的单位或者使用方向键和旋钮 🤍 修改当前值。

- 1. 幅度数值的输入方法请参考"参数设置方法"中的介绍。
- 2. 可选的幅度单位有: Vpp、mVpp、Vrms、dBm (50Ω 阻抗)。
- 3. 按下 [Utility] > 单位, 按下相应软键可将参数中的幅度和偏移 切换为高电平
- 和 **低电平**。按下 [Setting] > 高电平 或 低电平 即可修改高电平或低电平参数。

4. 可选的高电平或低电平单位有: V 和 mV。

说明:

Vpp 与 Vrms 单位转换

幅度单位 Vpp 是表示信号峰峰值的单位, Vrms 是表示信号有效值的单位。仪器默认使用 Vpp。您可以从前面板快速切换当前幅度的单位。

对于不同的波形, Vpp 与 Vrms 之间的关系不同。以正弦波为例, 二者之间的关系如下 图所示。

根据上图,可以推导出 Vpp 与 Vrms 之间换算关系满足如下关系式:

 $Vpp=2\sqrt{2}Vrms$

例如:将 2Vpp 转换成以 Vrms 为单位对应的值。 对于正弦波,转换后的值为 707.2mVrms。

5.2.4 设置 DC 偏移电压

直流偏移电压的可设置范围受"阻抗"和"幅值"设置的限制,请参考本产品数据手册中"偏移特性"的说明。默认值为 0V。

按下 [Setting] > 偏移。此时,使用数字键盘输入偏移的数值并在弹出的单位菜单中选择所需的单位或者使用方向键和旋钮 修改当前值。

1. 偏移数值的输入方法请参考"参数设置方法"中的介绍。

- 2. 可选的直流偏移电压单位有: V 和 mV。
- 3. 按下 [Utility] > 单位, 按下相应软键可将参数中的 幅度 和 偏移 切换为 高电平
- 和 低电平。按下 [Setting] > 高电平 或 低电平 即可修改高电平或低电平参数。
- 4. 可选的高电平或低电平单位有: V 和 m V。

5.2.5 设置起始相位

按下 [Setting] > 相位 进入相位子菜单。此时,使用数字键盘输入相位的数值并在弹出

的单位菜单中选择单位"度"或者使用方向键和旋钮 🤎 修改当前值。

- 1. 相位数值的输入方法请参考"参数设置方法"中的介绍。
- 2. 起始相位的可设置范围为 0°至 360°。默认值为 0°。
- 3. 按下 0相位 软键,可快速将相位设置为 0°。
- 4. 按下内同步 软键,使两个通道 (CH1和CH2)的相位彼此同步。

对于同频率或频率呈倍数关系的两个信号,通过该操作可以使其相位对齐。假定 CH1 输出 1kHz, 8Vpp,0°的正弦波,CH2 输出 1kHz,8Vpp,180°的正弦波。用示波器采集两个通道的波形,并使其稳定显示,可以发现示波器上显示的两个波形相位差不是180°。此时,按下内同步软键,示波器中的波形将呈180°相位差显示,而不需人为调整信号源中的初始相位。

同相位前:

图 5.1 同相位前

同相位后:

5.2.6 设置占空比

占空比定义为方波波形高电平持续的时间所占周期的百分比,如下图所示。

占空比的可设置范围受"频率/周期"设置的限制,请参考本产品数据手册中"方波特性" 的说明。默认值为 50%。

按下 [Wave] > 方波 选择方波函数,按下 占空比 软键使其突出显示。此时,使用数 字键盘输入数值并在弹出的单位菜单中选择单位 "%"或者使用方向键和旋钮 修改 当前值。数值的输入方法请参考 "参数设置方法"中的介绍。

5.2.7 设置对称性

对称性定义为三角波波形处于上升期间所占周期的百分比,如下图所示。该参数仅在选 中三角波时有效。

对称性的可设置范围为 0% 至 100% 。默认值为 50% 。 按下 [Wave] > 三角波 选择三角波函数,按下 对称性 软键使其突出显示。此时,使 用数字键盘输入数值并在弹出的单位菜单中选择单位 "%" 或者使用方向键和旋钮 修改当前值。数值的输入方法请参考 "参数设置方法"中的介绍。

5.2.8 设置脉冲参数

输出脉冲波时,除了配置前面介绍的基本参数(如频率、幅度、DC偏移电压、起始相位、高电平、低电平和同相位)之外,还需设置"脉宽/占空比"、"上升沿"和"下降沿"。

脉宽/占空比

脉宽定义为从脉冲上升沿幅度的 50%阈值处到紧接着的下一个下降沿幅度的 50%阈值处 之间的时间间隔,如上图所示。

脉宽的可设置范围受"最小脉冲宽度"和"脉冲周期"的限制(关于"最小脉冲宽度"和"脉冲周期"的范围,请参考本产品数据手册中"脉冲波特性"的说明)。默认值为100µs。

- 1. 脉宽 ≥ 最小脉冲宽度
- 2. 脉宽 ≤ 脉冲周期 最小脉冲宽度

脉冲占空比定义为脉宽占脉冲周期的百分比。

脉冲占空比与脉宽相关联,修改其中一个参数将自动修改另一个参数。脉冲占空比受"最小脉冲宽度"和"脉冲周期"的限制。

- 1. 脉冲占空比 ≥ 最小脉冲宽度÷脉冲周期×100%
- 2. 脉冲占空比 ≤ (1 最小脉冲宽度÷脉冲周期) ×100%

按下 [Wave] > 脉冲 选择脉冲波函数,按下 宽度 软键使其突出显示。此时,使用数 字键盘输入数值并在弹出的单位菜单中选择所需的单位或者使用方向键和旋钮 修改 当前值。

- 1. 数值的输入方法请参考"参数设置方法"中的介绍。
- 2. 可选的脉宽单位有: sec、msec、usec 和 nsec。
- 3. 按下 [Utility] > 单位,按下相应软键可将参数中的 脉宽 切换为 占空比。按下 [Setting] > 占空比 即可修改占空比参数。
,

上升/下降边沿时间

上升边沿时间定义为脉冲幅度从 10% 阈值上升至 90% 阈值所持续的时间;下降边沿时间定义为脉冲幅度从 90% 阈值下降至 10% 阈值所持续的时间,如上图所示。

上升/下降边沿时间的可设置范围受当前指定的脉宽限制,如下式所示。当所设置的数值 超出限定值,将自动调整边沿时间以适应指定的脉宽。

按下 [Wave] > 脉冲波 选择脉冲波函数,按下 边沿时间 软键进入边沿时间子菜单。 按下 前沿或 后沿 软键使其突出显示。此时,使用数字键盘输入数值并在弹出的单位菜

单中选择所需的单位或者使用方向键和旋钮 🤎 修改当前值。

- 1. 数值的输入方法请参考"参数设置方法"中的介绍。
- 2. 可选的边沿时间单位有: sec、msec、usec 和 nsec。
- 3. 上升边沿时间和下降边沿时间相互独立,允许用户单独设置。

5.2.9 启用通道输出

完成已选波形的参数设置之后,您需要开启通道以输出波形。

按下前面板 Output 1 按键或 (和) Output 2 按键, 按键背灯变亮, 仪器从前面板 1 或 (和) 2 连接器输出已配置的波形。

5.3 输出基本波形实例

配置信号发生器从 CH1 输出一个脉冲波形,频率为 1.5MHz,幅度为 500mVpp,DC 偏移为 5mVDC,脉宽为 200ns,上升沿时间为 75ns,下降沿时间为 100ns。

- 1. 按下前面板 [CH1/2] 按键选择 CH1。在用户界面中对应的 CH1 区域被点亮。
- 2. 按下 [Wave] > 脉冲 软键选中脉冲波函数。
- 3. 按下 频率 软键使其突出显示。使用数字键盘输入频率的数值"1.5",然后在弹出的菜单选择所需的单位"MHz"。
- 4. 按下 幅值 软键使其突出显示。使用数字键盘输入幅度的数值 "500",然后在弹出的菜单选择所需的单位 "mVpp"。
- 5. 按下 偏移 软键使其突出显示。使用数字键盘输入偏移的数值"5",然后在弹出的 菜单选择所需的单位"mV"。
- 6. 按下 脉宽 软键使其突出显示。使用数字键盘输入数值 "200", 然后在弹出的菜单选择单位 "nsec"。此时, 脉冲占空比随之改变。
- 按下 边沿时间 软键进入边沿时间子菜单。按下 前沿 软键使其突出显示。使用数 字键盘输入数值 "75",然后在弹出的菜单选择单位 "nsec"。
- 8. 按下 **边沿时间** 软键进入边沿时间子菜单。按下 后沿 软键使其突出显示。使用数 字键盘输入数值 "100",然后在弹出的菜单选择单位 "nsec"。
- 9. 按下前面板 Output 1 按键打开 CH1 的输出。

输出基本波形

CH1	CH2	
频率	<mark>1</mark> .500,000,000,000 мнz	
幅度	500 mV	
偏移	5 mV	
相位	0.00 deg	
宽度	200 ns	
前沿	75 ns	
后沿	100 ns	·
脉冲,开,	高阻,连续	
_返回 ←	が率 幅度 の	扁移 相位 更多 ↓ 1 of 2

图 5.3 设置界面示图

此时,将根据当前配置从 CH1 输出指定的波形。将 CH1 输出端连接到示波器可以观察 到如下图所示波形。

图 5.4 输出波形

6 输出任意波

HDG3000B 可以从单通道或同时从双通道输出仪器内建波形和用户自定义的任意波形。 内建波形存储在仪器内部非易失性存储器中,多达160余种。自定义任意波形可以包含 64 至 2M 个数据点,用户可以通过仪器编辑自定义任意波形或者通过 PC 软件编辑任意 波后下载到仪器中。

本章介绍如何配置仪器输出任意波形。

6.1 启用任意波功能

按下 [Wave] > 任意波 按键启用任意波功能,进入任意波操作菜单。

CH1	С	H2			
类型	Sinc		-		
频率	<mark>1</mark> .000,000,0	000 KHz			
幅度	200 mV				
偏移	0.000 V				
相位	0.00 deg			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****
采样率	75.000,000,	000,000 _{M Sals}			
任意波,于	F.高阻,连续	Į.			
返回	、 频率	幅度 (第	嗣移	相位	更多
t	G	G		↓ I	1 of 2

图 6.1 任意波界面示图

若要设置任意波基本参数,可参考"设置通道参数"。

类型:

选择内置波形或用户定义的任意波形 (存储在外部存储器中)。

6.2

选择任意波类型

HDG3000B 允许用户选择仪器内部或外部存储器中的任意波形进行输出。 按下 [Wave] > 任意波 > 类型 选择内部任意波形。 选择内部 160 余种任意波形,如下表所示。按下多功能键,选择一个类别("常用"、 "工程"、"分段调制"、"生物电"、"医疗"、"标准"、"数学"、"三角函数"、 "反三角"或"窗函数"),使用软键选择所需的波形,界面显示对应的波形。

内部波形

名称	说明
常用	

HDG3000B 用户手册

25

X

.

名称	说明
DC	直流电压
AbsSine	正弦绝对值
AbsSineHalf	半正弦绝对值
AmpALT	增益振荡曲线
AttALT	衰减振荡曲线
GaussPulse	高斯脉冲
NegRamp	倒三角
NPulse	负脉冲
PPulse	正脉冲
SineTra	Sine-Tra 波形
SineVer	Sine-Ver 波形
StairDn	阶梯下降
StairUD	阶梯上升/下降
StairUp	阶梯上升
Trapezia	梯形
工程	
BandLimited	带限信号
BlaseiWave	爆破震动"时间-振速"曲线
Butterworth	巴特沃斯滤波器
Chebyshev1	1型切比雪夫滤波器
Chebyshev2	II 型切比雪夫滤波器
Combin	组合函数
CPulse	C-Pulse 信号
CWPulse	CW 脉冲信号
DampedOsc	阻尼振荡"时间-位移"曲线
DualTone	双音频信号
Gamma	Gamma 信号
GateVibar	闸门自激振荡信号
LFMPulse	线性调频脉冲信号
MCNoise	机械施工噪声
Discharge	镍氢电池放电曲线
Pahcur	直流无刷电机电流波形
Quake	地震波
Radar	雷达信号
Ripple	电源纹波
RoundHalf	半球波
RoundsPM	RoundsPM 波形
StepResp	阶跃响应信号
SwingOsc	秋千振荡动能-时间曲线
TV	电视信号
Voice	语音信号

名称	说明
分段调制	נקטק
AM	正弦分段调幅波
FM	正弦分段调频波
PFM	脉冲分段调频波
PM	正弦分段调相波
PWM	脉宽分段调频波
牛物电	
Cardiac	心申信号
EOG	眼电图
EEG	100日 10日月
EMG	肌电图
Pulseilogram	堂人脉搏曲线
ResSpeed	堂人呼气流速曲线
医疗	
l FPulse	低频脉冲电疗波形
Tens1	袖经电刺激疗法波形 1
Tens2	神经电刺激疗法波形 2
Tens3	神经电刺激疗法波形 3
标准	
lanition	汽车内燃机点火波形
ISO16750-2 SP	具有振荡的汽车启动剖面图
ISO16750-2 VR	重新设置时,汽车的工作电压剖面图
ISO7637-2 TP1	由于切断电源导致的汽车瞬变现象
ISO7637-2 TP2A	由于配线中的电感导致的汽车瞬变现象
ISO7637-2 TP2B	由于启动转换关闭导致的汽车瞬变现象
ISO7637-2 TP3A	由于转换导致的汽车瞬变现象
ISO7637-2 TP3B	由于转换导致的汽车瞬变现象
ISO7637-2 TP4	启动过程中的汽车工作剖面图
ISO7637-2 TP5A	由于切断电池电源导致的汽车瞬变现象
ISO7637-2 TP5B	由于切断电池电源导致的汽车瞬变现象
SCR	SCR 烧结温度发布图
Surge	浪涌信号
数学	
Airy	Airy 函数
Besselj	第 I 类贝塞尔函数
Bessely	第 类贝塞尔函数
Cauchy	柯西分布
Cubic	立方函数
Dirichlet	狄利克雷函数
Erf	误差函数
Erfc	补余误差函数

HDG3000B 用户手册

名称	说明
ErfcInv	反补余误差函数
ErfInv	反误差函数
ExpFall	指数下降函数
ExpRise	指数上上函数
Gauss	高斯分布,或称正态分布
HaverSine	半正矢函数
Laguerre	四次拉盖尔多项式
Laplace	拉普拉斯分布
Legend	五次勒让德多项式
Log	以10为底的对数函数
LogNormal	对数正态分布
Lorentz	洛伦兹函数
Maxwell	麦克斯韦分布
Rayleigh	瑞利分布
Versiera	箕舌线
Weibull	韦伯分布
ARB_X2	平方函数
三角函数	
CosH	双曲余弦
CosInt	余弦积分
Cot	余切函数
CotHCon	凹陷的双曲余切
CotHPro	凸起的双曲余切
CscCon	凹陷的余割
CscPro	凸起的余割
CscHCon	凹陷的双曲余割
CscHPro	凸起的双曲余割
RecipCon	凹陷的倒数
RecipPro	凸起的倒数
SecCon	凹陷的正割
SecPro	凸起的正割
SecH	双曲正割
Sinc	Sinc 函数
SinH	双曲正弦
SinInt	正弦积分
Sqrt	平方根函数
Tan	正切函数
TanH	双曲正切
反三角	
ACos	反余弦函数
ACosH	反双曲余弦函数

名称	说明
ACotCon	凹陷的反余切函数
ACotPro	凸起的反余切函数
ACotHCon	凹陷的反双曲余切函数
ACotHPro	凸起的反双曲余切函数
ACscCon	凹陷的反余割函数
ACscPro	凸起的反余割函数
ACscHCon	凹陷的反双曲余割函数
ACscHPro	凸起的反双曲余割函数
ASecCon	凹陷的反正割函数
ASecPro	凸起的反正割函数
ASecH	反双曲正割函数
ASin	反正弦函数
ASinH	反双曲正弦函数
ATan	反正切函数
ATanH	反双曲正切函数
窗函数	
Bartlett	巴特利特窗
BarthannWin	修正的巴特利特窗
Blackman	布莱克曼窗
BlackmanH	BlackmanH 窗
BohmanWin	BohmanWin 窗
Boxcar	矩形窗
ChebWin	切比雪夫窗
FlattopWin	平顶窗
Hamming	汉明窗
Hanning	汉宁窗
Kaiser	凯塞窗
NuttallWin	最小四项布莱克曼-哈里斯窗
ParzenWin	Parzen 窗
TaylorWin	Taylaor窗
Triang	三角窗,也称 Fejer 窗
TukeyWin	Tukey窗

表 6.1 内部函数

自定义波形

选择存储在外部存储器 (U盘)中的用户定义的任意波形。

加载任意波

通过 PC 软件编辑 Arb 波形,并将波形数据输出到外部存储设备。 按下 [Wave] > 任意波 软键进入任意波菜单,按下 类型 > 自定义 选择波形数据加载。

7 输出谐波

HDG3000B 可作为一款谐波发生器,可以输出具有指定次数、幅度和相位的谐波,通常应用于谐波检测设备或谐波滤波设备的测试中。 本章介绍如何配置仪器使之输出谐波。

7.1 谐波功能概述

由傅立叶变换理论可知,时域波形是一系列正弦波的叠加,用如下等式表示:

 $f(t) = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2) + A_3 \sin(2\pi f_3 t + \varphi_3) + \dots$

通常,频率为 f1 的分量称为基波, f1 为基波频率, A1 为基波幅度, φ1 为基波相位。此 外的各分量的频率通常为基波频率的整数倍,称为谐波。频率为基波频率的奇数倍的分 量称为奇次谐波,频率为基波频率的偶数倍的分量称为偶次谐波。

HDG3000B 最高可输出 16 次谐波。选择 CH1 或 CH2 后,按下前面板 [Wave] > 谐波 软键进入谐波设置菜单。您可以设置基波的各参数,选择输出谐波的类型,指定输出谐波的最高次数以及各次谐波的幅度和相位。

谐波参数设置完成后,按下前面板 Output 1 按键或(和)Output 2 按键,按键背灯 变亮,仪器从相应的输出端输出具有指定参数的谐波。

7.2 设置基波参数

用户可以设置基波的频率、周期、幅度、DC 偏移电压、高电平、低电平、起始相位等参数,同时支持同相位操作。请参考"<u>输出基本波形</u>"一章的介绍设置基波参数。

7.3 设置谐波次数

HDG3000B 可输出的最高谐波次数不可高于该设定值。 按下前面板 [Wave] > 谐波 软键进入谐波设置菜单,按 次数 软键,此时,屏幕上 "次

数"突出显示,使用数字键盘或方向键和旋钮 》输入相应的数值。谐波次数的可设置范围受仪器最大输出频率和当前的基波频率限制。

- 范围:2至 仪器最大输出频率 ÷ 基波频率, 且为整数。
- 最大值为 16。

7.4 设置谐波类型

HDG3000B 可输出偶数谐波、奇数谐波、所有次数谐波。按下前面板 [Wave] > 谐波 软 键进入谐波设置菜单,按 类型 软键选择所需的谐波类型。

1. 偶数

按下该软键, 仪器输出基波和偶数谐波。

- 奇数 按下该软键,仪器输出基波和奇数谐波。
- **3. 所有** 按下该软键,仪器按顺序输出基波和所有谐波。

注意:实际输出的谐波受当前指定的"谐波次数"限制。

7.5 设置谐波幅度

进入谐波设置菜单,按幅度软键可以设置各次谐波的幅度。

1. 索引:

按下该软键选择欲选择谐波的索引号。

- 谐波幅度: 按下该软键设置选中次谐波的幅度。使用数字键盘输入幅度的数值并在弹出的单位菜 单中选择所需的单位或者使用方向键和旋钮
- 幅度数值的输入方法请参考"参数设置方法"中的介绍。
- 可选的幅度单位有:Vpp、mVpp。

7.6 设置谐波相位

进入谐波设置菜单,按相位软键可以设置各次谐波的相位。

1. 索引:

按下该软键选择欲选择谐波的索引号。

2. 谐波相位:

按下该软键设置选中次谐波的相位。使用数字键盘输入相位的数值并在弹出的单位菜 单中选择单位"[°]"或者使用方向键和旋钮 修改当前值。相位数值的输入方法请 参考"参数设置方法"中的介绍。

8 输出调制波形

HDG3000B 支持的调制方式包括 AM, DSB-AM, FM, PM, ASK, FSK, PSK, BPSK, QPSK, 3FSK, 4FSK,OSK 和 PWM。HDG3000B 可从单通道或同时从双通道输出已调制波形。 已调制波形由载波和调制波构成。载波可以是正弦波、方波(仅 PWM)、三角波、任意 波(DC 除外)或脉冲。调制波可以来自内部调制源、外部调制源或其他通道。

8.1 幅度调制 AM

调制波形通常由载波和调制波组成。对于幅度调制(Amplitude Modulation,AM), 载波的幅度随调制波的瞬时电压变化。

8.1.1 选择 AM 调制

按下 [Mod] > 类型 > AM 启用 AM 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- AM 启用后, 仪器将以当前设置的载波和调制波输出 AM 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.1.2 载波波形

AM 的载波波形可以是正弦波 (默认)、方波、三角波、脉冲波、任意波 (DC 除外) 或 谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.1.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性"的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 》输入所需的频率值。

8.1.4 调制源

按下前面板 [**Mod] > 信号源**,选择"内部"、"外部"或"其他通道"作为调制源。

内部源

选择 "内部" 调制源后,按下 形状 软键,可选择 正弦波、方波、三角波、噪声或 Arb

32

作为调制源。默认为正弦波。

- 正弦波
- 方波:占空比 50%
- 三角波:对称性 50%
- 噪声
- Arb:任意波形 Sinc、Exp Fall、Haver Sine、Lorentz、Gause、Dual Tone、 ECG。

注意:噪声可以作为调制波,但不能作为载波。

外部源

选择"外部"调制源后,调制菜单里的 频率 和 形状 菜单置灰禁用。信号发生器接收 从后面板 [FSK/Trig/Sync/Extmod] 连接器输入的外部调制信号。此时,AM 调制幅 度受该连接器上的±4V 信号电平控制。例如,调制深度为 100%时,则在外部调制信号 为+4V 时输出为最大幅度,在外部调制信号为-4V 时输出为最小幅度。

其他通道

CH1 和 CH2 可相互作为调制源,设置 CH1 调制波时,CH2 作为调制源;同样设置 CH2 调制波时,CH1 作为调制源。当选择"其他通道"作为调制源时,需要打开该通道的输出,才可对另一个通道调制。

8.1.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

使用数字键盘或方向键和旋钮 输入所需的频率值。 调制频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"内部"调制源以外的其他调制源时,该菜单置灰禁用。

8.1.6 调制深度

调制深度表示幅度变化的程度,以百分比表示。
按下 [Mod] > 深度 软键可设置 AM 调制深度。
调制深度范围: 0%至 120%。默认为 100%。
在 0% 调制时,输出幅度为指定值的一半。
在 100% 调制时,输出幅度等于指定值。
在大于 100% 调制时,仪器的输出幅度不会超过 10Vpp (负载为 50Ω)。
选择 "外部"调制源时,仪器的输出幅度还受后面板 [FSK/Trig/Sync/Extmod] 连接
器上的+4V信号电平控制。例如、将调制深度设置为 100%、则在外部调制信号为+4V

器上的±4V 信号电平控制。例如,将调制深度设置为 100%,则在外部调制信号为+4V 时输出为最大振幅,在外部调制信号为-4V 时输出为最小振幅。

8.2 双边带调幅 DSB-AM

双边带调幅是一种利用均值为零的模拟基带信号 m (t) 与正弦载波 c (t) 相乘得到, 将 正弦波抑制在 m (t) 与 - m (t) 之间的载波线性调制技术。双边带调幅信号中仅包含两 个边频, 无载波分量, 其频带宽度仍为调制信号频率的 2 倍。

8.2.1 选择 DSB-AM 调制

按下 [Mod] > 类型 > DSB-AM 启用 DSB-AM 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- DSB-AM 启用后, 仪器将以当前设置的载波和调制波输出 DSB-AM 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.2.2 载波波形

DSB-AM 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外) 或谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.2.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性" 的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 》输入所需的频率值。

8.2.4 调制源

按下 [Mod] > 信号源选择"内部"、"外部"或"其他通道"作为调制源。

内部源

选择"内部"调制源后,按下 形状软键,可选择正弦波、方波、三角波、噪声或 Arb 作为调制源。默认为正弦波。

- 正弦波
- 方波:占空比 50%
- 三角波: 对称性 50%
- 噪声
- Arb: 任意波形 Sinc、Exp Fall、Haver Sine、Lorentz、Gause、Dual Tone、ECG。

注意:噪声可以作为调制波,但不能作为载波。

外部源

选择"外部"调制源后,调制菜单的 频率 和 形状 菜单置灰禁用。信号发生器接收从 后面板 [FSK/Trig/Sync/Extmod] 连接器输入的外部调制信号。此时,DSB-AM 调制 幅度受该连接器上的±4V 信号电平控制。例如,将调制深度设置为 100%,则在外部调 制信号为+4V 或-4V 时输出为最大振幅,在外部调制信号为 0V 时输出为最小振幅。

其他通道

CH1 和 CH2 可相互作为调制源,设置 CH1 调制波时,CH2 作为调制源;同样设置 CH2 调制波时,CH1 作为调制源。当 CH1 和 CH2 的其中一个通道作为调制源时,需要打开 该通道的输出,才可对另一个通道调制。

8.2.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮 ♥ 输入所需的频率值。
- 调制频率范围为 2mHz 至 1MHz,默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.2.6 调制深度

调制深度表示幅度变化的程度,以百分比表示。

- 按下 [Mod] > 深度 软键,可设置 DSB-AM 调制深度。
- 调制深度范围: 0%至 120%。默认为 100%。
- 在 0% 调制时,不输出任何信号。
- 在 50% 调制时, 输出幅度为指定值的 1/4。
- 在 100% 调制时, 输出幅度为指定值的一半。
- 在大于 100% 调制时,仪器的输出幅度不会超过 10Vpp (负载为 50Ω)。

选择"外部"调制源时, 仪器的输出幅度还受后面板[FSK/Trig/Sync/Extmod]连接器 上的±4V 信号电平控制。例如, 将调制深度设置为 100%, 则在外部调制信号为+4V 或 -4V 时输出为最大振幅, 在外部调制信号为 0V 时输出为最小振幅。

8.3 频率调制 FM

对于频率调制 (Frequency Modulation, FM), 载波的频率随调制波的瞬时电压变化。

8.3.1 选择 FM 调制

按下 [Mod] > 类型 > FM 启用 FM 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- FM 启用后, 仪器将以当前设置的载波和调制波输出 FM 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.3.2 载波波形

FM 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或谐 波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.3.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性" 的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 Setting] > 频率 软键,通过数字键盘或方向键和旋钮 Setting] > 频率 软键,通过数字键盘或方向键和旋钮 Setting

8.3.4 调制源

按下 [Mod] > 信号源选择"内部"、"外部"或"其他通道"作为调制源。

内部源

选择"内部"调制源后,按下形状软键,可选择正弦波、方波、三角波、噪声或 Arb 作为调制源。默认为正弦波。

- 正弦波
- 方波:占空比 50%
- 三角波:对称性 50%
- 噪声
- Arb: 任意波形 Sinc、Exp Fall、Haver Sine、Lorentz、Gause、Dual Tone、ECG。

注意:噪声可以作为调制波,但不能作为载波。

外部源

选择"外部"调制源后,形状 菜单置灰禁用。信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器输入的外部调制信号。此时,FM 调制频率受该连接 器上的±4V 信号电平控制。

其他通道

CH1 和 CH2 可相互作为调制源,设置 CH1 调制波时,CH2 作为调制源;同样设置 CH2 调制波时,CH1 作为调制源。当 CH1 和 CH2 的其中一个通道作为调制源时,需要打开 该通道的输出,才可对另一个通道调制。

8.3.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮 ♥♥ 输入所需的频率值。
- 调制频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.3.6 频率偏差

频率偏差是指调制波形的频率相对于载波频率的偏差。按下 [Mod] > 偏差 软键,可设置 FM 频率偏差。

- 频率偏差必须小于或等于载波频率。
- 试图设置频率偏差大于载波频率,仪器将设置频率偏差等于载波频率。
- 频率偏差与载波频率之和必须小于或等于当前载波频率上限与1kHz之和。

选择"外部"调制源时,频率偏差受后面板 [FSK/Trig/Sync/Extmod] 连接器上的 ±4V 信号电平控制。正信号电平对应频率增加,负信号电平对应于频率降低,较低的电 平产生较少的偏差。例如,将频率偏差设置为 1kHz,则+4V 信号电平对应于频率增 1kHz, -4V 信号电平对应于频率降低 1kHz。

8.4 相位调制 PM

对于相位调制 (Phase Modulation, PM), 载波的相位随调制波形的瞬时电压变化。

8.4.1 选择 PM 调制

按下 [Mod] > 类型 > PM 启用 PM 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- PM 启用后, 仪器将以当前设置的载波和调制波输出 PM 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.4.2 载波波形

PM 载波波形可以是正弦波 (默认)、方波、三角波、脉冲波、任意波 (DC 除外) 或谐 波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.4.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性" 的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 >> 输入所需的频率值。

8.4.4 调制源

按下 [Mod] > 信号源选择"内部"、"外部"或"其他通道"作为调制源。

内部源

选择"内部"调制源后,按下 形状 软键,可选择 正弦波、方波、三角波、噪声或 Arb 作为调制源。默认为正弦波。

- 正弦波
- 方波:占空比 50%
- 三角波:对称性 50%
- 噪声
- Arb: 任意波形 Sinc、Exp Fall、Haver Sine、Lorentz、Gause、Dual Tone、ECG。

注意:噪声可以作为调制波,但不能作为载波。

外部源

选择"外部"调制源后,调制菜单的 频率 和 形状 菜单置灰禁用。信号发生器接收从 后面板 [FSK/Trig/Sync/Extmod] 连接器输入的外部调制信号。此时,PM 调制相位 受该连接器上的±4V 信号电平控制。

其他通道

CH1 和 CH2 可相互作为调制源,设置 CH1 调制波时,CH2 作为调制源;同样设置 CH2 调制波时,CH1 作为调制源。当 CH1 和 CH2 的其中一个通道作为调制源时,需要打开 该通道的输出,才可对另一个通道调制。

8.4.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮 ₩ 输入所需的频率值。
- 调制频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.4.6 相位偏差

相位偏差指调制波形的相位相对于载波相位的变化。按下 [Mod] > 偏差 软键,可设置 PM 相位偏差。

- 使用数字键盘或方向键和旋钮 ♥ 輸入所需的相位值。
- 相位偏差的设置范围为 0° 至 360°。

选择"外部"调制源时,相位偏差由后面板 [FSK/Trig/Sync/Extmod] 连接器上的 ±4V 信号电平控制。例如,将相位偏差设置为 180°,则+4V 信号电平对应于相位改 变 180°,较低的外部信号电平产生较少的偏差。

8.5 幅移键控 ASK

用户可以配置信号发生器在两个预置幅度("载波幅度"和"调制幅度")间"移动" 其输出幅度。该输出以何种频率(ASK 速率)在这两个预置幅度间移动,由仪器内部或 后面板 [FSK/Trig/Sync/Extmod] 连接器上的信号电平决定。

8.5.1 选择 ASK 调制

按下 [Mod] > 类型 > ASK 启用 ASK 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- ASK 启用后, 仪器将以当前设置的载波和调制波输出 ASK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.5.2 载波波形

ASK 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.5.3 载波幅度

选择载波波形后,按下前面板 [Setting] > 幅度 软键,通过数字键盘或方向键和旋钮 输入所需的幅度值。幅度范围受频率/周期限制。请参考本产品数据手册中"幅度特性"的相关说明。

8.5.4 调制源

按下 [Mod] > 信号源选择 "内部"或 "外部"调制源。

内部源

选择"内部"调制源,即选择占空比为 50% 的方波为调制波形。此时,输出幅度在"载 波幅度"和"调制幅度"之间"移动"的频率由"ASK 帧率"决定。

外部源

选择"外部"调制源时,信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器 输入的外调制信号。

注意: [FSK/Trig/Sync/Extmod] 连接器从外部控制 ASK 调制和控制 AM/ FM/ PM

调制时不同。

8.5.5 ASK 帧率

选择"内部"调制源后,按下帧率软键,可设置输出幅度在"载波幅度"和"调制幅度"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz,默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.5.6 调制幅度

启用 ASK 调制功能后,按下 [Mod] > 幅度 软键,可设置调制幅度。

- 使用数字键盘或方向键和旋钮 ♥ 輸入所需的幅度值。
- 幅度范围 (高阻) 为0至20V, 默认为100mV。

8.6 频移键控 FSK

用户可以配置信号发生器在两个预置频率("载波频率"和"跳跃频率")间"移动" 其输出频率。该输出以何种频率(FSK速率)在这两个预置频率间移动,由仪器内部或后 面板 [FSK/Trig/Sync/Extmod] 连接器上的信号电平决定。

8.6.1 选择 FSK 调制

按下 [Mod] > 类型 > FSK 启用 FSK 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- FSK 启用后, 仪器将以当前设置的载波和调制波输出 FSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.6.2 载波波形

FSK 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.6.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性"的相关说明。对于所有载波,默认值为1kHz。

8.6.4 调制源

按下 [Mod] > 信号源选择 "内部"或 "外部"调制源。

内部源

选择"内部"调制源,即选择占空比为 50% 的方波为调制波形。此时,输出频率在"载 波频率"和"跳跃频率"之间"移动"的频率由"FSK 帧率"决定。

外部源

选择"外部"调制源时,信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器 输入的外调制信号。

注意: [FSK/Trig/Sync/Extmod] 连接器从外部控制 FSK 调制和控制 AM/ FM/ PM

调制时不同。

8.6.5 FSK 帧率

选择"内部"调制源后,按下 帧率 软键,可设置输出频率在"载波频率"和"跳跃频率"之间"移动"的频率。

- ▶ 使用数字键盘或方向键和旋钮♥♥輸入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.6.6 跳跃频率

跳跃频率的范围取决于当前所选的载波波形,请参考本产品数据手册中"频率特性"的 相关说明。

按下 [Mod] > 跳频 软键,可通过数字键盘或旋钮 🖤 输入所需的频率值。

8.7 相移键控 PSK

用户可以配置信号发生器在两个预置相位("载波相位"和"调制相位")间"移动" 其输出相位。该输出以何种频率(PSK 速率)在这两个预置相位间移动,由仪器内部或 后面板 [FSK/Trig/Sync/Extmod] 连接器上的信号电平决定。

8.7.1 选择 PSK 调制

按下 [Mod] > 类型 > PSK 启用 PSK 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- PSK 启用后, 仪器将以当前设置的载波和调制波输出 PSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.7.2 载波波形

PSK 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.7.3 载波相位

按下前面板 [Setting] > 相位 软键,通过数字键盘或方向键和旋钮 输入所需的相位。

相位设置范围为 0° 至 360°, 默认为 0°。

8.7.4 调制源

按下 [Mod] > 信号源选择 "内部"或 "外部"调制源。

内部源

选择"内部"调制源,即选择占空比为 50% 的方波为调制波形。此时,输出相位在"载 波相位"和"调制相位"之间"移动"的频率由"PSK 帧率"决定。

外部源

选择"外部"调制源时,信号发生器接收从后面板[FSK/Trig/Sync/Extmod]连接器输入的外调制信号。

注意: [FSK/Trig/Sync/Extmod] 连接器从外部控制 PSK 调制和控制 AM/ FM/ PM 调

制时不同。

8.7.5 PSK 帧率

选择"内部"调制源后,按下帧率软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"外部"调制源时,该菜单置灰禁用。

8.7.6 调制相位

PSK 相位即调制波的相位。按下 [Mod] > 相位 软键, 可设置调制相位。

- 使用数字键盘或方向键和旋钮 输入所需的相位值。
- 相位范围为 0° 至 360°, 默认为 180°。

8.8 二相相移键控 BPSK

用户可以配置信号发生器在两个预置相位("载波相位"和"调制相位")间"移动" 其输出相位。该输出以何种频率(BPSK 速率)在这两个预置相位间移动,由仪器内部信 号电平决定。

8.8.1 选择 BPSK 调制

按下 [Mod] > 类型 > BPSK 启用 BPSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- BPSK 启用后, 仪器将以当前设置的载波和调制波输出 BPSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.8.2 载波波形

BPSK 载波波形可以是正弦波 (默认)、方波、三角波、脉冲波、任意波 (DC 除外) 或谐 波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.8.3 载波相位

按下前面板 [Setting] > 相位 软键,通过数字键盘或方向键和旋钮 Setting] > 相位 软键,通过数字键盘或方向键和旋钮 Setting 1

相位设置范围为 0° 至 360°, 默认为 0°。

8.8.4 调制源

BPSK 使用内部调制源, 按下 数据源 软键, 选择 PN15、PN21、01、10 码作为调制源。 默认为 01 码。

8.8.5 BPSK 帧率

按下 [Mod] > 帧率 软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

8.8.6 调制相位

按下 [Mod] > 相位 软键,可设置调制相位。

- 使用数字键盘或方向键和旋钮 ♥ 输入所需的相位值。
- 相位范围为 0° 至 360°, 默认为 180°。

8.9 四相相移键控 QPSK

用户可以配置信号发生器在四个预置相位("载波相位"和3个"调制相位")间"移动"其输出相位。该输出以何种频率(QPSK速率)在这四个预置相位间移动,由仪器内部信号电平决定。

8.9.1 选择 QPSK 调制

按下 [Mod] > 类型 > QPSK 启用 QPSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- QPSK 启用后, 仪器将以当前设置的载波和调制波输出 QPSK 波形。为了避免多个 波形变化, 在配置其他调制参数之后启用调制。

8.9.2 载波波形

QPSK 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或 谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.9.3 载波相位

按下前面板 [Setting] > 相位 软键,通过数字键盘或方向键和旋钮 ₩ 输入所需的相 位。 相位设置范围为 0° 至 360°,默认为 0°。

8.9.4 调制源

QPSK 使用内部调制源, 按下 数据源 软键, 选择 PN15、PN21 码作为调制源。默认为 PN15 码。

8.9.5 QPSK 帧率

按下 [Mod] > 帧率 软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

8.9.6 调制相位

按下 [Mod] > 相位1 或相位2/相位3 软键,可分别设置3个调制相位。

- 使用数字键盘或方向键和旋钮 ♥♥ 輸入所需的相位值。
- 相位范围为 0° 至 360°, 默认为 180°。相位 1、相位 2 和 相位 3 的默认值分别为 45°, 135° 和 225°。

8.10 三进制频移键控 3FSK

用户可以配置信号发生器在三个预置频率("载波频率"和2个"跳跃频率")间"移动"其输出频率。该输出以何种频率(3FSK速率)在这三个预置频率间移动,由仪器内部信号电平决定。

8.10.1 选择 3FSK 调制

按下 [Mod] > 类型 > 3FSK 启用 3FSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- 3FSK 启用后, 仪器将以当前设置的载波和调制波输出 3FSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.10.2 载波波形

3FSK 载波波形可以是正弦波(默认)、方波、三角波、脉冲波、任意波(DC 除外)或谐波。

- 按下前面板 [Wave] 按键,选择所需的载波波形。
- 噪声和 DC 不能作为载波。

8.10.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性" 的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 >> 输入所需的频率值。

8.10.4 调制源

3FSK 使用内部调制源,调制波形为方波。

8.10.5 3FSK 帧率

选择"内部"调制源后,按下 帧率 软键,可设置输出频率在"载波频率"和2个"跳跃频率"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮 → 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

8.10.6 跳跃频率

跳跃频率的范围取决于当前所选的载波波形,请参考本产品数据手册中"频率特性"的 相关说明。

按下 [Mod] > 跳频 软键, 可通过数字键盘或旋钮 🖤 输入所需的频率值。

8.11 四进制频移键控 4FSK

用户可以配置信号发生器在四个预置频率("载波频率"和3个"跳跃频率")间"移动"其输出频率。该输出以何种频率(4FSK速率)在这四个预置频率间移动,由仪器内部信号电平决定。

8.11.1 选择 4FSK 调制

按下 [Mod] > 类型 > 4FSK 启用 4FSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。
- 4FSK 启用后, 仪器将以当前设置的载波和调制波输出 4FSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.11.2 载波波形

4FSK 载波波形可以是正弦波 (默认)、方波、三角波、脉冲波、任意波 (DC 除外) 或谐

- 波。
- 按下前面板 [Wave] 按键,选择所需的载波波形。
- ▶ 噪声和 DC 不能作为载波。

8.11.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性" 的相关说明。对于所有载波,默认值为1kHz。

8.11.4 调制源

4FSK 使用内部调制源,调制波形为方波。

8.11.5 4FSK 帧率

按下 [Mod] > 帧率 软键,可设置输出频率在"载波频率"和3个"跳跃频率"之间 "移动"的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz,默认为 100Hz。

8.11.6 跳跃频率

跳跃频率的范围取决于当前所选的载波波形,请参考本产品数据手册中"频率特性"的 相关说明。

按下 [Mod] > 跳频 软键, 可通过数字键盘或旋钮 🖤 输入所需的频率值。

8.12 振荡键控 OSK

使用 OSK (Oscillation Shift Keying) 调制时,用户可以配置信号发生器输出一个间歇 振荡的正弦信号,如下图所示 (载波频率为 100Hz,键控频率为 1kHz)。内部晶振的起 振和停振,由内部或后面板 [FSK/Trig/Sync/Extmod] 连接器上的信号电平控制。内 部晶振起振时,仪器开始输出载波波形;内部晶振停振时,仪器停止输出。

图 8.1 OSK 调制示例

8.12.1 选择 OSK 调制

按下 [Mod] > 类型 > OSK 启用 OSK 功能。 启用 Mod 时, Sweep 或 Burst 功能将自动关闭 (如果当前已打开)。 OSK 启用后,仪器将以当前设置的载波和调制波输出 OSK 波形。为了避免多个波形变化, 在配置其他调制参数之后启用调制。

8.12.2 载波波形

OSK 载波波形只可以是正弦波,按下前面板 [Wave] 选择 正弦波。

8.12.3 载波频率

不同的载波波形,载波频率的可设置范围不同,请参考本产品数据手册中"频率特性"的相关说明。对于所有载波,默认值为1kHz。

按下前面板 [Setting] > 频率 软键,通过数字键盘或方向键和旋钮 >> 输入所需的频率值。

8.12.4 调制源

按下 [Mod] > 信源 选择 "内部" 或 "外部" 调制源。

内部源

选择"内部"调制源,即选择方波为调制波形。此时,输出信号的间歇时间与振荡时间由"键控频率"决定。

外部源

选择"外部"调制源时,信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器 输入的外调制信号。

8.12.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮 🖤 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz,默认为 100Hz。

注意:选择"外部"作为调制源时,该菜单置灰禁用。

8.12.6 震荡时间

震荡时间,即内部晶振的震荡时间。震荡时间的可设范围与当前所选的键控频率有关。

按下 [Mod] > 震荡时间 软键使其突出显示后,此时通过数字键盘或方向键和旋钮 分别输入所需的值,默认可设置范围为 8ns 至 4.99975ms。

8.13 脉宽调制 PWM

载波的脉宽随调制波形的瞬时电压而变化。

8.13.1 选择 PWM 调制

PWM 只可用于调制方波。

按下前面板**[Wave] > 方波**,然后按下 [**Mod] > 类型 >PWM** 启用 PWM 功能。

- 当前载波波形不是方波时,调制类型中 PWM 不可选。
- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- PWM 启用后, 仪器将以当前设置的载波和调制波输出 PWM 波形。

8.13.2 载波波形

PWM 的载波波形只可以是方波,按下前面板 [Wave] > 方波。

8.13.3 载波占空比

按下前面板 [Setting] > 占空比 软键,此时通过数字键盘或旋钮 🖤 输入所需的值。

8.13.4 调制源

按下 [Mod] > 信号源选择"内部"、"外部"或"其他通道"作为调制源。

内部源

选择"内部"调制源后,按下形状软键,可选择正弦波、方波、三角波、噪声或 Arb 作为调制源。默认为正弦波。

- 正弦波
- 方波:占空比 50%
- 三角波: 对称性 50%
- 噪声
- Arb:任意波形 Sinc、Exp Fall、Haver Sine、Lorentz、Gause、Dual Tone、ECG。

注意:噪声可以作为调制波,但不能作为载波。

外部源

选择"外部"调制源后, 形状 菜单置灰禁用。信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器输入的外部调制信号。 "占空比偏差"由该连接器 上的±4V 信号电平控制。

其他通道

CH1 和 CH2 可相互作为调制源,设置 CH1 调制波时,CH2 作为调制源;同样设置 CH2 调制波时,CH1 作为调制源。当 CH1 和 CH2 的其中一个通道作为调制源时,需要打开 该通道的输出,才可对另一个通道调制。

8.13.5 调制频率

选择"内部"调制源后,按下频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮 输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意:选择"外部"或"其他通道"作为调制源时,该菜单置灰禁用。

8.13.6 占空比偏差

按下 [Mod] > 偏差 软键,使用数字键盘或方向键和旋钮 输入所需的值。 占空比偏差表示已调波形相对于原始脉冲波形的占空比的变化(以%表示)。

- 占空比偏差范围: 0.1%至 49.9%。
- 占空比偏差不能超过当前的脉冲占空比。
- 占空比偏差受到最小占空比和当前边沿时间的限制。

CN

选择"外部"调制源时,占空比偏差由后面板 [FSK/Trig/Sync/Extmod] 连接器上的 ±4V 信号电平控制。

9 扫频

CN

在扫频模式下,信号发生器在指定的扫频时间内从起始频率到截止频率变化输出。 HDG3000B 支持线性扫频方式;允许用户设定"标记"频率;允许用户设置起始保持、 终止保持和返回时间;支持内部、外部和手动触发源;对于正弦波、方波、三角波、脉 冲波、谐波和任意波 (DC 除外),均可以产生扫频输出。

9.1 开启扫频功能

按下前面板的 [Sweep] 按钮打开扫频功能 (按钮的背光灯点亮), Mod 和 Burst 功能 将自动关闭 (如果当前已打开)。

为了避免多个波形变化,在配置其他参数 (作为基波的波形和振幅) 之后启用扫频模式。 再次按下 **[Sweep]** 按钮以关闭扫频模式。

9.2 起始频率和截止频率

信号发生器总是从起始频率扫频到截止频率,然后又回到起始频率。

- 当起始频率 < 截止频率, 信号发生器从低频向高频扫描。
- 当起始频率 > 截止频率, 信号发生器从高频向低频扫描
- 当起始频率 = 截止频率, 信号发生器以固定频率输出。

开启扫频模式后,按下起始频率/中心频率软键使"起始频率"突出显示。此时截止频

率/频率跨度 软键中的"截止频率"也突出显示。使用数字键盘或方向键和旋钮 输入所需的频率值。默认设置下,起始频率为100Hz,截止频率为1kHz。不同扫频波形对应的起始频率和截止频率范围不同,请参考本产品数据手册中"频率特性"的相关说明。

修改"起始频率"或"截止频率"后,信号发生器将重新从指定的"起始频率"开始扫频输出。

9.3 中心频率和频率跨度

您也可以通过中心频率和频率跨度设定扫频的边界。

- 中心频率 = (起始频率+ 截止频率)/2
- 频率跨度 = 截止频率 起始频率

开启扫频模式后,按下起始频率/中心频率 软键使 "中心频率" 突出显示。此时截止频

率/频率跨度 软键中的"频率跨度"也突出显示。使用数字键盘或方向键和旋钮 输入所需的频率值。默认情况下,中心频率为 550Hz,频率跨度为 900Hz。不同扫频波形 对应的中心频率和频率跨度范围不同,且中心频率与频率跨度相互影响。

定义当前选中波形的最小频率为 Fmin,最大频率为 Fmax, Fm = (Fmin+Fmax)/2.

中心频率的可设置范围为 Fmin 至 Fmax,不同波形的频率参数,请参考本产品数据手册中"频率特性"的相关说明。

频率跨度的范围受中心频率影响 中心频率<Fm时,频率跨度的范围为 ±2 × (中心频率 - Fmin); 中心频率≥Fm时,频率跨度的范围为 ±2 × (Fmax- 中心频率)。

正弦波为例, Fmin为 1µHz, Fmax为 160MHz, Fm 约为 80MHz。 如果中心频率为 550Hz,则频率跨度的可设置范围为: ±2 × (550Hz – 1µHz) = ±1.09999998kHz; 如果中心频率为 155MHz,则频率跨度的可设置范围为: ±2 × (160MHz – 155MHz) = ±10MHz.

修改"中心频率"或"频率跨度"后,信号发生器将重新从指定的"起始频率"开始扫频输出。

注意:大范围扫频时,输出信号的幅度特性可能会有变化。

9.4 线性扫频

HDG3000B 提供线性扫频方式。

在线性扫频方式下,输出信号的频率以线性方式变化,即以"每秒若干赫兹"的方式改变输出频率,该变化由"起始频率"、"截止频率"和"扫频时间"控制。

9.5 <u>扫频时间</u>

扫频时间指定了波形从起始频率到截止频率变化的秒数。

开启扫频模式后,按下 **扫频时间** 软键,使用数字键盘或旋钮 修改扫频时间。 默认值为 1s,可设置范围为 1ms 至 50Ks。

9.6 返回时间

返回时间指定了波形从截止频率返回到起始频率变化的秒数。

开启扫频模式后,按下 返回时间 软键,使用数字键盘或旋钮 修改返回时间。 默认值为 1s,可设置范围为 1ms 至 50Ks。

9.7 <u>保持时间</u>

保持时间指定了波形停留在截止频率的时间。

开启扫频模式后,按下 保持时间 软键,使用数字键盘或旋钮 W修改保持时间。 默认值为 1s,可设置范围为 1ms 至 50Ks。

9.8 标志频率

当扫频信号的频率小于标志频率时,后面板 [FSK/Trig/Sync/Extmod] 连接器上输出 低电平。当扫频信号的频率在指定的标志频率点或大于标志频率时,后面板 [FSK/Trig/Sync/Extmod]连接器上输出的同步信号从低电平变为高电平。

开启扫频模式后,按下标志频率软键,使用数字键盘或旋钮 修改标志频率。默认值是 500Hz,可设置的范围受"起始频率"和"截止频率"的限制。

9.9 扫频触发源

扫频触发源可设置为内部、外部或手动。当接收到触发信号时,信号发生器将生成扫频 波形输出,然后等待下一个触发信号。

开启扫频模式后, 在菜单第二页按下 **触发源** 软键, 选择 内部、外部或手动。默认设置 为内部。

- 内部:信号发生器以由指定的扫频时间、返回时间和保持时间的总和确定的速率输 出连续扫频波形。
- 外部:信号发生器接收从后面板 [FSK/Trig/Sync/Extmod] 连接器输入的触发信号。一旦连接器接收到一个具有指定斜率的 TTL 脉冲,就启动一次扫频。想要指定TTL 脉冲的斜率,按下 斜率 软键选择"上升"或"下降",默认为"上升"。
- 手动:手动触发时,每按一次前面板的 [Trigger] 键,相应通道立即启动一次扫频。

9.10 触发输出边沿

扫频模式下,当触发源为"内部"或"手动"时,信号发生器将从后面板 [FSK/Trig/Sync/Extmod] 连接器输出一个具有指定边沿的 TTL 兼容信号。

内部和手动触发:

信号发生器在扫频开始时从后面板 [FSK/Trig/Sync/Extmod] 连接器输出脉冲波形。 触发周期取决于指定的扫频时间、返回时间和保持时间。当扫频信号的频率小于标志频 率时,后面板 [FSK/Trig/Sync/Extmod] 连接器上的同步信号输出低电平。当扫频信 号的频率在指定的标志频率点或大于标志频率时,同步信号输出从低电平变为高电平。

外部触发:

[FSK/Trig/Sync/Extmod] 连接器作为外部触发信号的输入端,并且没有同步信号输出。

10 <u>猝发</u>

HDG3000B 可以输出指定周期数量的波形,称为猝发。HDG3000B 支持由内部、手动 或外部触发源控制猝发输出;支持三种猝发类型,包括多周期、无限周期和门控。信号 发生器可以使用正弦波、方波、三角波、脉冲、噪声(仅适用于门控猝发)、谐波或任意 波(DC 除外)生成猝发输出。

10.1 开启猝发功能

按下前面板的 [Burst] 按键开启猝发功能 (按钮的背光灯点亮), Mod 和 Sweep 功能 将自动关闭 (如果当前已打开)。 为了避免多个波形变化,在配置其他参数之后启用猝发模式。

10.2 类型

HGD3000B 可以输出多周期、无限周期和门控三种猝发类型。默认设置为多周期。

猝发类型	触发源	载波波形
多周期	内部、外部、手动	正弦波、方波、三角波、脉冲、谐波或任意波(DC 除外)
无限周期	外部、手动	正弦波、方波、三角波、脉冲、谐波或任意波(DC 除外)
门控	外部	正弦波、方波、三角波、脉冲、噪声、谐波或任意 波 (DC 除外)

表 10.1 猝发类型

多周期猝发

多周期模式下,信号发生器在接收到触发信号时,输出具有特定循环数目(计数)的波形。在输出指定循环数目的波形之后,仪器将停止并等待下一个触发信号。 按下前面板的 [Burst] > 类型 > 多周期,启动多周期猝发。

CH1	CH2		
类型 计数	多周期 3	Å A A	
周期 相位	10.000,00 ms 0.0 deg	W	
正弦波开	F.高阻.猝发		
类型 多周期	计数 周期 ら ら	相位 触发源 ら 内部	更多 1 of 2

图 10.1 多周期猝发示图

对于多周期模式, 仪器可以使用"内部"、"外部"或"手动"触发源触发输出。此外 用户还可以设置"计数"、"猝发周期"(内部触发)、"相位"、"触发斜率"(外 部触发)和"Trigger"(手动触发)等参数。

无限周期猝发

无限周期模式下, 波形的循环次数被设置为无限大。信号发生器在接收到触发信号时, 输出连续的波形。

按下前面板的 [Burst] > 类型 > 无限周期, 启动无限周期猝发。屏幕显示一个无限循环的猝发示意图。

图 10.2 无限周期猝发示图

对于无限周期模式,需要使用"外部"或"手动"触发源触发输出。此外用户还可以设置"相位"、"触发斜率"(外部触发)和"Trigger"(手动触发)参数。

门控猝发

门控模式下,信号发生器根据后面板 [FSK/Trig/Sync/Extmod] 连接器上输入的外部 信号电平控制波形输出。

按下前面板的 [Burst] > 类型 > 门控, 启动门控猝发, 然后按下 极性 软键设置门控的极性为"正"(或者"负")。信号源在门控信号为"正"(或者"负")时才有猝发

波形输出。

CH1	CH2	
类型 计数 周位	门控 3 10.000,00 ms 0.0 deg	
正弦波。	甲,高阻,猝发	
类型 门控	计数 周期 ら ら	相位 触发源 更多

图 10.3 门控猝发示图

当门控信号为"真"时,信号发生器输出连续波形。当门控信号为"假"时,先完成当 前的波形周期,然后停止,同时保持在所选波形的起始猝发相位对应的电压电平上。对 于噪声波形,在门控信号变为"假"时立即停止输出。

对于门控猝发,只能使用"外部"触发源触发输出。此外,用户还可以设置"相位"。

计数 10.3

猝发计数仅适用于多周期猝发模式(内部、外部或手动触发源)。

按下前面板的 [Burst] > 类型 > 多周期, 启动多周期猝发。按下触发源软键选择内 部。屏幕中,"计数"参数突出显示,处于可编辑状态。此时使用数字键盘或方向键和 可改变循环次数。默认为 1,可设置范围为 1 至 2000,000 ,000。 旋钮 当猝发类型为无限周期或门控时,该菜单置灰禁用。

周期 10.4

猝发周期仅适用于内部触发多周期猝发模式,定义为从一个猝发开始到下一个猝发开始 的时间。默认为 10 ms。

- 猝发周期 ≥ 1µs + 载波波形周期× 猝发计数。此处,波形周期为基波(正弦波、 方波等)的周期。
- 如果设置的猝发周期过小,信号发生器将自动增加该周期以允许指定数量的循环输 出.

按下前面板的 [Burst] > 类型 > 多周期, 启动多周期猝发。按下触发源 软键选择内

部,按下周期软键,使用数字键盘或方向键和旋钮 🤎 输入所需的周期。默认值为10ms, 可设置范围为 2µs 至 500s。

当猝发类型为无限周期或门控时,该菜单置灰禁用。
10.5 相位

猝发相位定义为猝发起始点的相位。

开启猝发功能后,按下 相位 软键,使用数字键盘或方向键和旋钮 输入所需的相位。 默认值为 0°,可设置范围为 0°至 360°。

- 对于正弦波、方波、三角波、脉冲, 0°是波形正向通过 0V (或 DC 偏移值) 的点。
- 对于任意波形,0°是第一个波形点。
- 对于噪声,相位设置无效。

10.6 触发源

触发源可设置为内部、外部和手动。信号发生器在接收到一个触发信号时,产生一次猝 发输出,然后等待下一个触发信号。

开启猝发功能后,按下 触发源 软键选择内部、外部或手动。默认设置为内部触发源。

内部触发

内部触发时,信号发生器仅可输出多周期猝发信号,输出的猝发信号频率由猝发周期决定。

外部触发

外部触发时,信号发生器可输出多周期、无限周期和门控猝发信号。信号发生器接收从 后面板 [FSK/Trig/Sync/Extmod] 连接器输入的触发信号,每次接收到一个具有指定 斜率或极性的触发信号时,就启动一次猝发输出。

按下斜率 软键设置触发斜率,可设置"上升"或"下降",默认为"上升"。

手动触发

手动触发时,信号发生器仅可输出多周期和无限周期猝发。每按一次 [**Trigger**] 按键, 立即在对应通道启动一次猝发输出 (如果当前已打开)。如果对应的通道没有开启,触发 将被忽略。

10.7 门控极性

门控极性仅适用于门控猝发模式。信号发生器在后面板 [FSK/Trig/Sync/Extmod] 连接器上的门控信号为"高电平"或"低电平"时输出猝发信号。 按下前面板的 [Burst] > 类型 > 门控, 启动门控猝发。按下极性 软键选择 正 或 负。 默认设置为 正。

10.8 触发输出边沿

猝发模式下,当触发源为"内部"或"手动"时,信号发生器将从后面板

[FSK/Trig/Sync/Extmod] 连接器输出具有指定边缘 TTL 兼容信号。

- 内部触发:信号发生器在猝发开始时从 [FSK/Trig/Sync/Extmod] 连接器输出具 有可变占空比(与载波周期和周期数有关)的方形。
- 手动触发:信号发生器在猝发开始时从 [FSK/Trig/Sync/Extmod] 连接器输出脉冲。
- 外部触发: [FSK/Trig/Sync/Extmod] 连接器用作外部触发信号的输入端,并且没有触发输出。

11 <u>计数器</u>

该信号发生器提供了计数器功能,可以测量外部输入信号的频率、周期、占空比、正脉 冲宽度和负脉冲宽度等参数。

按下前面板的 [Utility] > 计数器 软键打开计数器功能,同时进入计数器设置界面。将 被测信号输入到后面板 [Counter] 连接器进行测量。

按下退出 软键或其他任意按键,将关闭计数器测量。

按下 **闸门时间** 软键,使用方向键和旋钮 修改当前值。 默认值为 1s,可设置范围为 10ms~16s。

•	计数器 频2	圣 <u>1.000</u> 率 1.00	1.000 s 1.000,000,000,000 MHz		
	周期 占空比	1.000 us 50.76 %	正脉宽 负脉宽	508 ns 492 ns	
间门 C	时间				退出

图 11.1 计数器示图

12 <u>存储与调用</u>

该仪器允许用户将仪器当前的状态存储到内部或外部存储器中并在需要时进行调用。

12.1 存储系统

仪器提供一个内部存储器(home 磁盘)和一个外部存储器(usb 磁盘)。 home 磁盘:用户可以将仪器状态以.pho 格式保存到该磁盘。 usb 磁盘:当前面板 USB 接口检测到 U 盘时可用。用户可以将仪器状态以.pho 格式保 存到 U 盘。还可以读取 U 盘中存储的状态文件和任意波文件。

仪器状态存储包括波形基本参数以及调制、扫描和猝发参数以及计数器参数。

按下前面板的 [Utility] > 存储,打开存储/调用界面,如下图所示。

图 12.1 存储界面

注意:本仪器只能识别由英文字母、数字和下划线组成的文件名。如果使用其他字符命名

文件或文件夹,则该名称可能会在存储和调用界面中显示异常。

12.2 文件操作

打开磁盘后,用户可以对文件执行一系列操作,包括新建、保存、调出、重命名、删除 文件或目录,及刷新页面。

新建

在存储界面下,选择 home 磁盘或 usb 磁盘,然后按下 新建 软键进入文件名编辑界 面,如下图所示。

+	= /++				
1.	F1店				
		新建		EX	
	dds_s	etup_1_0			
	1	2 3 4 5	6789	0 - = Del	
	Clrqwertyuiop[]\				
	Capasdfghjkl; 'CR				
	Shift	ZXCV	/bnm,	. / 🔺	
		Spa	ace		
类 文]型 切打 [件	與焦点 键盘 □	退 删除	保存 ↑ 返	

图 12.2 新建界面

- 1. 按下 类型 软键选择"文件"。
 - 文件:新建一个状态文件。

目录:新建一个目录。

按下 切換焦点 软键,选择"名字"或"键盘"。
 名字:将光标置于文件名输入区域。使用方向键移动光标位置,指定修改字符的位置。

入字符。在虚拟键盘中,旋转旋钮 选择 Cap 并按下旋钮 可以切换键盘的大 写字符和小写字符;旋转旋钮 选择 Shift 并按下旋钮 可以切换键盘的其他 符号。

- 3. 按下 回退 软键, 逐个删除光标前面的字符。
- 4. 按下删除 软键,删除文件名输入区域中的所有字符。
- 5. 在文件名输入区域完成文件名输入后,按下保存软键,保存设置文件。
- 6. 按下 返回 软键,退出新建菜单,返回到上一级菜单。

保存

按下保存 软键, 自动创建一个新的状态文件并保存。

调出

按下调出 软键,调出状态文件或任意波形文件。

重命名

在文件窗口使用旋钮 选择指定的文件或目录,按下 **重命名** 软键打开重命名菜单。 请参阅"新建"的操作方法。文件名编辑完成后,按下 **确认** 软键以确认更改。 存储与调用

图 12.3 重命名界面

删除

在文件窗口使用旋钮 送送 选择指定的文件或目录,按下 删除 软键,删除选定的文件或 目录。

刷新

按下 刷新 软键, 刷新文件列表。

13 辅助功能

该信号发生器允许用户配置通道参数、配置远程接口、设置系统参数。

13.1 同步

同步信号从后面板上的 [FSK/Trig/Sync/Extmod] 连接器输出。该仪器可同时输出单 通道或双通道的基本波形 (噪声除外)、任意波形 (直流除外)、谐波、扫频信号、猝发 信号和调制信号的同步信号。

- 同步信号是一个方波,周期的前半部分为高电平,而后半部分为低电平。当同步信号禁用时,[FSK/Trig/Sync/Extmod] 连接器处的输出是逻辑低电平的。
- 同步信号的幅度不可调,是固定的 TTL 电平。

各种波形的同步信号

- 对于正弦波、方波、三角波和脉冲,同步信号是占空比为 50%的方波。当输出第一 个波形点时,同步信号是 TTL 高电平。当基本波频率小于或等于 30MHz 时,同步 信号的频率为基本波的频率;当基本波频率大于 30MHz 时,同步信号的频率为(基 本波的频率÷2n)。其中,n表示分频系数,当基本波频率大于 30MHz 且小于或等 于 60MHz 时,n=1;当基本波频率大于 60MHz 且小于或等于 90MHz 时,n=2。
- 对于噪声,无同步信号输出。
- 对于任意波形,同步信号是占空比为 50%的方波。当输出第一个波形点时,同步信号是 TTL 高电平。同步信号频率为任意波形的频率。
- 对于谐波,同步信号是占空比为 50%的方波。当输出第一个波形点时,同步信号是 TTL 高电平。同步信号频率为基波的频率。
- 对于 AM、DSB-AM、FM、PM、PWM 调制,内部调制时,同步信号以调制频率 为参考、占空比为 50%的方波。在调制波形前半周期,同步信号为 TTL 高电平。外 部调制时,无同步信号输出。
- 对于 ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK、OSK 调制,同步信号以调制 速率为参考、占空比为 50%的方波。对于 ASK、FSK、PSK、OSK 调制,外部调制 时,无同步信号输出。
- 对于扫频,当扫频信号频率小于标志频率时,同步信号将输出低电平。当扫频信号
 的频率在指定的标志频率点或大于标志频率时,同步信号从低电平改变为高电平。
- 对于多周期猝发,内部或手动触发时,在猝发开始时,同步信号是 TTL 高电平。在指定循环数结束处,同步信号为 TTL 低电平(如果波形具有一个相关的起始相位,则可能不是零交叉点)。对于一个无限周期猝发,手动触发时,其同步信号与基础波形的同步信号相同。对于所有猝发类型,外部触发时,无同步信号输出。

13.2 阻抗设置

阻抗设置适用于输出振幅和 DC 偏移电压。对于前面板 [1] 连接器,HDG3000B 有一个 50Ω 的固定串联输出阻抗。如果实际负载与指定的值不同,则显示的电压电平将不匹配

被测部件的电压电平。要确保正确的电压电平,必须保证负载阻抗设置与实际负载匹配。

按下 [Utility] > CH1 设置 > 阻抗 选择 高阻 或 50Ω。默认设置为高阻。阻抗设置将 显示在屏幕上,如下图所示, CH1 的阻抗设置为 "高阻"。

阻抗设置↔

图 13.1 阻抗示例

修改阻抗设置后,信号发生器将自动调整输出幅度和偏移电压。例如,当前幅度为 "5Vpp",此时将输出阻抗从"50Ω"改为"高阻",屏幕显示的幅度将增加一倍,为 "10Vpp"。反之,当前幅度为"5Vpp",此时将输出阻抗从"高阻"改为"50Ω",屏 幕显示的幅度将下降一半,为2.5Vpp。

注意:参数修改后仅显示发生改变,信号发生器的实际输出并不改变。

13.3 系统设置

13.3.1 <u>系统语言</u>

该信号发生器支持中英文菜单,并提供相应的帮助信息、提示信息和界面显示。 按下 [Utility] > Language 选择需要的语言。当选择"中文"或"English"时,菜单、 帮助信息、提示消息和界面分别以中文或英文显示。 当按下 [P] 按键以恢复默认设置时,语言不会被更改。

13.3.2 时钟源

该仪器提供内部 10MHz 的时钟源,也可接收从后面板 [10MHz In/Out] 连接器输入的 外部时钟源,还可以从 [10MHz In/Out] 连接器输出内部的时钟源,供其他设备使用。

按下 [Utility] > 时钟源 软键,选择"内部"或"外部"。默认设置为"内部"。当选择"外部",系统将检测后面板 [10MHz In/Out] 连接器是否有有效的外部时钟信号输入。如果仪器没有检测到有效的时钟源,则弹出提示消息"系统没有检测到有效的外部时钟",并将时钟源切换成"内部"。如果仪器检测到有效的时钟源,则弹出提示消

,

用户可以通过时钟源的设置使两台仪器或多台仪器之间同步。两台仪器同步时,不能使用"同相位"功能。"同相位"功能只适用于调整同一台仪器的两个输出通道之间的相位关系,不能改变两台仪器之间的输出通道的相位关系。当然,您可以通过改变每个输出通道的"起始相位"来改变两台仪器之间的相位关系。

两台仪器或多台仪器之间的同步方法

- 两台仪器的同步:
 将仪器 A(时钟源设为"内部时钟")的 10MHz In/Out 连接到仪器 B(时钟源设为"外部时钟")的 10MHz In/Out,然后设置两台仪器的输出频率相同,即可实现两台仪器的同步。
- 多台仪器的同步:
 将一台仪器(时钟源为"内部时钟")的10MHz时钟源分成多路,然后分别连接
 至多台仪器(时钟源为"外部时钟")的10MHz In/Out,最后设置每台仪器的输
 出频率相同,即可实现多台仪器的同步。

13.3.3 开机设置

将仪器下次上电时使用的配置设置为 默认设置、上一次 或 输出关闭。默认选择为 默认设置。

- 默认设置:信号发生器开机时自动调出默认设置。个别参数(如:语言)除外。
- 上一次:信号发生器自动保存关机前的设置,再次开机后信号发生器会自动调出上 一次关机之前的设置。包括所有的系统参数和输出配置,时钟源除外。设置好后, 需要等到最少 20 秒钟再关机。
- 输出关闭:信号发生器自动保存关机前的设置,再次开机后信号发生器会自动调出 上一次关机之前的设置并关闭通道的输出。设置好后,需要等到最少 5 秒钟再关机。
 按下 [Utility] > 开机 软键,选择需要的配置类型。
 当按下 [P] 按键以恢复默认设置时,该设置不受影响。

13.3.4 亮度

按下 [Utility] > **亮度** 软键,使用方向键和旋钮 更改屏幕的亮度。 亮度的范围从 1% 至 100%。

13.3.5 系统信息

按下 [Utility] > 信息 软键,可以查看设备的信息 (如型号、序列号、版本号等)。

13.3.6 单位

按下 [Utility] > 单位 软键,可选择波形参数的单位。

- 频率/周期 选择周期或频率作为可设置的波形参数。
- 幅度/高电平 选择幅度或高电平作为可设置的波形参数。
- 偏移/低电平 选择偏移或低电平作为可设置的波形参数。
- 脉冲宽度/占空比 选择脉冲宽度或占空比作为可设置的脉冲波参数。

13.3.7 截图

用户可以将屏幕显示的内容以图片形式存储到外部 U 盘。

首先请连接 U 盘 (FAT32 格式,存储空间小于或等于 32G),将 U 盘插入到仪器前面板 的 USB 口。连接成功后,屏幕上弹出相应的提示消息。

然后进入需要截图的界面,按下 [Utility] 按键,仪器完成截图并进入 Utility 菜单,此 时信号发生器已将截图缓存于机器内部。按下 截图 软键,仪器会将截图文件保存到 U 盘中。

注意: 仪器缓存的截图始终是最后一次按下 [Utility] 按键时的画面。

13.4 升级固件

将固件拷贝到 U 盘 (FAT32 格式,存储空间小于或等于 32G),将 U 盘插入到仪器前面 板的 USB 口。

按下 [Utility] > 升级 软键,进入文件浏览器界面,使用旋钮 送送 选择固件文件并按下 调出 软键选中文件,再按下 确认 软键开始升级固件。

14 <u>远程控制</u>

HDG3000B 可以通过以下两种方法远程控制。

电脑端软件

用户可以使用电脑端软件发送命令远程控制仪器。可以从官方网站下载软件。

自定义编程

用户可以使用 SCPI (可编程仪器的标准命令) 命令对仪器进行编程和控制。有关命令和编程的更多信息, 请参阅光盘中 SCPI 协议手册。

HDG3000B 可以通过 USB 端口与电脑通信。本章将详细介绍如何使用软件通过 USB 端口远程控制。

- 安装 Keysight IO libraries suite
- 通过后置 USB 控制

14.1 安装 Keysight IO libraries suite

用户可以在汉泰公司官网下载仪器的应用软件包: http://hantek.com.cn/products/detail/12267 或者点击以下网址,下载最新的软件: http://www.keysight.com/main/software.jspx?ckey=2175637&id=2175637&nid =-11143.0.00&lc=eng&cc=GB 双击软件图标开始安装。

IOLibSuite_17_2_20818_0

点击"Next"。

	Welcome to the InstallShield Wizard for Keysight 10 Libraries Suite 2017
	The InstallShield® Wizard will install Keysight IO Libraries Suite 2017 on your computer. To continue, click Next.
հահահահ	

阅读许可协议并接受。点击"Next"。

远程控制

Keysight IO Libraries Suite 2017 - InstallShield Wizard						
License Agreement						
Please read the following license a	TECHNOLOGIES					
KEYSIGHT SOFTWARE END-USER LICENSE AGREEMENT						
ATTENTION: THIS SOFTWARE ("EULA") SET FORTH BELOW.	ATTENTION: THIS SOFTWARE IS SUBJECT TO THE END-USER LICENSE AGREEMENT ("EULA") SET FORTH BELOW. TO INSTALL OR USE THE SOFTWARE, YOU MUST FIRST AGREE TO THE EULA BELOW. IF THE EULA IS PRESENTED TO YOU ELECTRONICALLY AND IF YOU HAVE					
TO INSTALL OR USE THE SC BELOW. IF THE EULA IS PRESI						
Agree Pri						
💿 Do Not Agree						
nstallShield						
< Back Next > Cancel						
al",点击"Next"。						
Keysight IO Libraries Suite 2017	- InstallShield Wizard	×				
KEYSIGHT TECHNOLOGIES						
Please select a setup type.						
 Typical Recommended features for your configuration will be installed. 						

选择 "Typ

Keysight IO Lib	raries Suite 2017 - InstallShield Wizard	
	4	KEYSIGHT TECHNOLOGIE
Please select	a setup type.	
⊚ Typical	Recommended features for your configuration will be installed.	
© Custom	Choose the program features you want to install. Recommende advanced users.	d for
InstallShield		
	Kack Next >	Cancel

或选择"Custom",点击"Next"。

选择 "Insta	ll Keysight VISA as primary VISA" ,点击"Next" 。
	Keysight IO Libraries Suite 2017 - InstallShield Wizard
	Install Keysight VISA
	The 32 bit Keysight VISA will be installed as the primary VISA (recommended). For more information, click the Help button.
	 Install Keysight VISA as primary VISA (if another vendor's VISA is present, it will be renamed to visa32.dll.bak).
	Install Keysight VISA as secondary in side-by-side mode.
	InstallShield
	Help < Back Next > Cancel

点击 "Install" 开始复制文件。

Start Copying Files Review settings before copying files.		
Setup has enough information to start co change any settings, click Back. If you copying files.	opying the program files. If you w are satisfied with the settings, cli	ant to review or ck Next to begin
Current Settings:		
 IVI Shared Components IVI. NET Shared Components VISA COM Shared Components Keysight Communications Fabric Save current IO configuration. IO Libraries Suite Directories: Core Product Directory: C:\Program IVI Components Directory: C:\Program VISA Directory: C:\Program Files\I 	m Files\Keysight\IO Libraries Suit gram Files\IVI Foundation\IVI VI Foundation\VISA\	e
<		۱.
allShield		

安装自动完成。您会在电脑屏幕右下角看到正在运行的 IO 程序。

	The InstallShield Wizard has successfully installed Keysight IO Libraries Suite 2017. Click Finish to exit the wizard.
ւնեննե	
	< Back Finish Cancel
Keysight IO Libraries Suite	
0	
nize	

14.2 通过后置 USB 控制

连接设备

将仪器通过 USB 线连接到电脑。

搜索设备

启动 Keysight IO,软件会自动搜索当前连接到 PC 的设备。您也可以单击 Rescan 来搜索设备。

查看设备

找到的设备将出现在目录下,并且设备的型号和 USB 接口信息也将被显示。 例如,HDG3102B(USB0::0x0483::0x5740::**********::0::INSTR)

远程控制设备

1) 使用电脑端软件控制

用户可以在汉泰公司官网下载仪器的应用软件包: http://hantek.com.cn/products/detail/12267 双击 Setup.exe 文件,根据安装向导进行安装。 安装完成后,软件图标将显示在电脑桌面上。

双击桌面上的软件程序图标,可以看到用户界面如下:

2) 自定义编程控制

启动 Keysight IO, 软件会自动搜索当前连接到 PC 的设备。点击"Send Commands To This Instrument",打开 Keysight interactive IO interface。可以发送命令和读取数据。

🛃 Connect Interact Help Keysight Interactive IO 🔔 🗖 🗙										
Stop C	🔊 Nevice Clear	IOI Read STB	SYST:ERR?	Diear History	E Settings					
Command	*IDN?						•	Comr	mands	
	Send Comm	nand Rea	ad Response	Send & Read						
Instrument	Session Histo	огу								
* Connected to: USB0::0x0483::0x5740::203E37415053::0::INSTR										
CONNECTER	TO USB0::0	x0483::0x57	40::203E3741	5053::0::INSTR						

有关命令和编程的更多信息,请参阅编程手册。

15 <u>故障处理</u>

下面列举了 HDG3000B 在使用过程中可能出现的故障及排查方法。当您遇到这些故障时, 请按照相应的步骤进行处理,如不能处理,请联系青岛汉泰电子有限公司当地经销商或 直接与青岛汉泰电子有限公司总部联系,同时请提供机器的设备信息(获取方法: [Utility] > 信息)。

1. 如果按下电源键, 仪器仍然黑屏, 没有任何显示:

- 1) 检查电源线接头是否接好。
- 2) 检查电源键是否按实。
- 3) 做完上述检查后, 重新启动仪器。
- 4) 如果仍然无法正常使用本产品,请与 Hantek 联系。

2. 屏幕显示太暗,看不清:

1) 检查液晶屏的亮度设置值是否太小。

2) 按 [Utility] -> 亮度,使用数字键盘调节信号发生器液晶屏的亮度至合适的状态。您 也可以使用方向键和旋钮调节亮度值。

3. 仪器设置正确但无波形输出:

- 1) 检查 BNC 电缆是否与相应的[CH1] 或 [CH2] 通道输出端口紧固连接。
- 2) 检查 BNC 线是否有内部损伤。
- 3) 检查 BNC 线与测试仪器是否紧固连接。

4) 检查 Output1 或 Output2 键背灯是否点亮。如果未点亮,按下相应按键使其背灯 点亮。

5) 做完上述检查后, 如果仍然无法正常使用本产品, 请与 Hantek 联系。

4. U 盘设备不能被识别:

1) 检查 U 盘设备是否连接至其他仪器或计算机上可以正常工作。

- 2) 确认 U 盘为 FAT32 格式设备。
- 3) 重新启动仪器后,再插入U盘设备进行检查。
- 4) 如果仍然无法正常使用 U 盘, 请与 Hantek 联系。

5. 如何以 dBm 为单位设置波形的幅度?

1) 选择所需通道。

2) 检查通道设置界面中的输出设置是否为 50Ω ([Utility] -> CH1 设置)。

3) 选择所需的波形, 按下 幅度 软键, 通过数字键盘输入所需的数值并选择单位 dBm 即可。

16 附录

附录 A: 附件 16.1

订单信息	订单号					
主机型号						
15MHz, 2通道	HDG3012B					
25MHz, 2通道	HDG3022B					
40MHz, 2通道	HDG3042B					
60MHz, 2通道	HDG3062B					
80MHz, 2通道	HDG3082B					
100MHz, 2 通道	HDG3102B					
标配附件						
符合所在国标准的电源线						
BNC to BNC	HT322					
鳄鱼夹线 (2 根)	HT324					
USB 线						

16.2 附录 B: 保修概要

青岛汉泰电子有限公司(以下简称 Hantek)承诺其生产仪器的主机和附件,在产品保修 期内无任何材料和工艺缺陷。

在保修期内, 若产品被证明有缺陷, Hantek 将为用户免费维修或更换。详细保修条例请 参见 Hantek 官方网站或产品保修卡的说明。欲获得维修服务或保修说明全文,请与 Hantek 维修中心或各地办事处联系。

除本概要或其他适用的保修卡所提供的保证以外, Hantek 公司不提供其他任何明示或 暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任

何情况下, Hantek 公司对间接的, 特殊的或继起的损失不承担任何责任。

- 地址:山东省青岛市高新区宝源路780号,联东U谷35号楼
- 总机: 400-036-7077
- 电邮: service@hantek.com
- 电话: 0532-55678770, 55678772, 55678773
- 邮编:266000
- 官网: www.hantek.com
- 青岛汉泰电子有限公司